cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A103372 a(1) = a(2) = a(3) = a(4) = a(5) = 1 and for n>5: a(n) = a(n-4) + a(n-5).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 7, 8, 8, 9, 12, 15, 16, 17, 21, 27, 31, 33, 38, 48, 58, 64, 71, 86, 106, 122, 135, 157, 192, 228, 257, 292, 349, 420, 485, 549, 641, 769, 905, 1034, 1190, 1410, 1674, 1939, 2224, 2600, 3084, 3613, 4163, 4824, 5684, 6697, 7776
Offset: 1

Views

Author

Jonathan Vos Post, Feb 03 2005

Keywords

Comments

k=4 case of the family of sequences whose k=1 case is the Fibonacci sequence A000045, k=2 case is the Padovan sequence A000931 (offset so as to begin 1,1,1) and k=3 case is A079398 (offset so as to begin 1,1,1,1).
The general case for integer k>1 is defined: a(1) = a(2) = ... = a(k+1) and for n>(k+1) a(n) = a(n-k) + a(n-[k+1]).
For this k=4 case, the ratio of successive terms a(n)/a(n-1) approaches the unique positive root of the irreducible characteristic polynomial: x^5 - x - 1 = 0, A160155.
The sequence of prime values in this k=4 case is A103382; The sequence of semiprime values in this k=4 case is A103392.

Examples

			a(14) = 5 because a(14) = a(14-4) + a(14-5) = a(10) + a(9) = 3 + 2 = 5.
		

References

  • Zanten, A. J. van, The golden ratio in the arts of painting, building and mathematics, Nieuw Archief voor Wiskunde, 4 (17) (1999) 229-245.

Crossrefs

Programs

  • Mathematica
    k = 4; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Array[a, 61]
    LinearRecurrence[{0,0,0,1,1},{1,1,1,1,1},70] (* Harvey P. Dale, Apr 22 2015 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,1,0,0,0]^(n-1)*[1;1;1;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f. -x*(1+x)*(1+x^2) / ( -1+x^4+x^5 ). - R. J. Mathar, Aug 26 2011
a(n) = A124789(n-2)+A124798(n-1). - R. J. Mathar, Jun 30 2020

Extensions

Edited by Ray Chandler and Robert G. Wilson v, Feb 06 2005

A103380 a(n) = a(n-12) + a(n-13).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 12, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 21, 27, 31, 32, 32, 32, 32, 32, 32, 32, 32, 33, 38, 48, 58, 63, 64, 64, 64, 64, 64, 64, 64, 65
Offset: 1

Views

Author

Jonathan Vos Post, Feb 16 2005

Keywords

Crossrefs

Programs

  • Maple
    A103380 := proc(n) option remember ; if n <= 13 then 1; else procname(n-12)+procname(n-13) ; fi; end: for n from 1 to 120 do printf("%d,",A103380(n)) ; od: # R. J. Mathar, Aug 30 2008
  • Mathematica
    LinearRecurrence[{0,0,0,0,0,0,0,0,0,0,0,1,1},{1,1,1,1,1,1,1,1,1,1,1,1,1},90] (* Harvey P. Dale, Jul 16 2012 *)

Formula

For n>13: a(n) = a(n-12) + a(n-13). a(1) = a(2) = ... = a(13) = 1.
G.f.: x*(1-x^12) / ((1-x)*(1-x^12-x^13)). - Colin Barker, Mar 27 2013

Extensions

Terms from a(11) on corrected by R. J. Mathar, Aug 30 2008

A103373 a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = 1 and for n>6: a(n) = a(n-5) + a(n-6).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 5, 7, 8, 8, 8, 9, 12, 15, 16, 16, 17, 21, 27, 31, 32, 33, 38, 48, 58, 63, 65, 71, 86, 106, 121, 128, 136, 157, 192, 227, 249, 264, 293, 349, 419, 476, 513, 557, 642, 768, 895, 989, 1070, 1199, 1410, 1663, 1884, 2059, 2269
Offset: 1

Views

Author

Jonathan Vos Post, Feb 03 2005

Keywords

Comments

k=5 case of the family of sequences whose k=1 case is the Fibonacci sequence A000045, k=2 case is the Padovan sequence A000931 (offset so as to begin 1,1,1), k=3 case is A079398 (offset so as to begin 1,1,1,1) and k=4 case is A103372.
The general case for integer k>1 is defined: a(1) = a(2) = ... = a(k+1) and for n>(k+1) a(n) = a(n-k) + a(n-[k+1]).
For this k=5 case, the ratio of successive terms a(n)/a(n-1) approaches the unique positive root of the characteristic polynomial: x^6 - x - 1 = 0. This is the real constant 1.1347241384015194926054460545064728402796672263828014859251495516682....
The sequence of prime values in this k=5 case is A103383; the sequence of semiprime values in this k=5 case is A103393.

Examples

			a(22) = 9 because a(22) = a(22-5) + a(22-6) = a(17) + a(16) = 5 + 4 = 9.
		

References

  • Zanten, A. J. van, "The golden ratio in the arts of painting, building and mathematics", Nieuw Archief voor Wiskunde, 4 (17) (1999) 229-245.

Crossrefs

Programs

  • Mathematica
    k = 5; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Array[a, 65]
    RecurrenceTable[{a[n] == a[n - 5] + a[n - 6], a[1] == a[2] == a[3] == a[4] == a[5] == a[6] == 1}, a, {n, 65}] (* or *)
    Rest@ CoefficientList[Series[-x (1 + x + x^2 + x^3 + x^4)/(-1 + x^5 + x^6), {x, 0, 65}], x] (* Michael De Vlieger, Oct 03 2016 *)
    LinearRecurrence[{0,0,0,0,1,1},{1,1,1,1,1,1},70] (* Harvey P. Dale, Jul 20 2019 *)
  • PARI
    a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; 1,1,0,0,0,0]^(n-1)*[1;1;1;1;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
    
  • PARI
    x='x+O('x^50); Vec(x*(1+x+x^2+x^3+x^4)/(1-x^5-x^6 )) \\ G. C. Greubel, May 01 2017

Formula

G.f.: x*(1+x+x^2+x^3+x^4) / (1-x^5-x^6 ). - R. J. Mathar, Aug 26 2011

Extensions

Edited by Ray Chandler and Robert G. Wilson v, Feb 06 2005

A257062 T(n,k)=Number of length n 1..(k+1) arrays with every leading partial sum divisible by 2 or 3.

Original entry on oeis.org

1, 2, 2, 3, 4, 2, 3, 7, 6, 2, 4, 9, 18, 11, 3, 4, 16, 27, 45, 20, 4, 5, 18, 64, 81, 113, 33, 4, 6, 27, 81, 256, 243, 284, 59, 5, 7, 35, 141, 364, 1024, 729, 713, 104, 7, 7, 45, 200, 738, 1636, 4096, 2187, 1791, 178, 8, 8, 49, 293, 1149, 3866, 7353, 16384, 6561, 4498, 314, 9
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2015

Keywords

Comments

Table starts
.1...2.....3.....3.......4.......4........5........6.........7.........7
.2...4.....7.....9......16......18.......27.......35........45........49
.2...6....18....27......64......81......141......200.......293.......343
.2..11....45....81.....256.....364......738.....1149......1905......2401
.3..20...113...243....1024....1636.....3866.....6599.....12387.....16807
.4..33...284...729....4096....7353....20249....37893.....80545....117649
.4..59...713..2187...16384...33048...106056...217603....523733....823543
.5.104..1791..6561...65536..148534...555483..1249592...3405505...5764801
.7.178..4498.19683..262144..667585..2909419..7175812..22143847..40353607
.8.314.11297.59049.1048576.3000456.15238479.41207296.143987445.282475249

Examples

			Some solutions for n=4 k=4
..2....2....2....4....4....4....4....2....3....2....3....3....3....4....4....3
..4....2....4....5....2....5....2....2....3....2....5....5....3....4....2....3
..4....4....4....1....3....5....2....2....4....5....1....2....2....2....2....3
..2....1....4....2....5....4....1....4....2....5....5....4....1....5....4....5
		

Crossrefs

Column 1 is A079398(n+4)
Column 2 is A026385(n+1)
Column 4 is A000244
Column 5 is A000302

Formula

Empirical for column k:
k=1: a(n) = a(n-3) +a(n-4)
k=2: a(n) = a(n-2) +3*a(n-3) +a(n-4)
k=3: a(n) = a(n-1) +3*a(n-2) +2*a(n-3)
k=4: a(n) = 3*a(n-1)
k=5: a(n) = 4*a(n-1)
k=6: a(n) = 4*a(n-1) +2*a(n-2) +a(n-3)
k=7: a(n) = 4*a(n-1) +5*a(n-2) +7*a(n-3) +4*a(n-4)
k=8: a(n) = 4*a(n-1) +8*a(n-2) +11*a(n-3) +3*a(n-4)
k=9: a(n) = 5*a(n-1) +9*a(n-2) +5*a(n-3)
k=10: a(n) = 7*a(n-1)
k=11: a(n) = 8*a(n-1)
k=12: a(n) = 8*a(n-1) +4*a(n-2) +2*a(n-3)
k=13: a(n) = 8*a(n-1) +10*a(n-2) +13*a(n-3) +7*a(n-4)
k=14: a(n) = 8*a(n-1) +15*a(n-2) +19*a(n-3) +5*a(n-4)
k=15: a(n) = 9*a(n-1) +15*a(n-2) +8*a(n-3)
k=16: a(n) = 11*a(n-1)
k=17: a(n) = 12*a(n-1)
k=18: a(n) = 12*a(n-1) +6*a(n-2) +3*a(n-3)
k=19: a(n) = 12*a(n-1) +15*a(n-2) +19*a(n-3) +10*a(n-4)
k=20: a(n) = 12*a(n-1) +22*a(n-2) +27*a(n-3) +7*a(n-4)
k=21: a(n) = 13*a(n-1) +21*a(n-2) +11*a(n-3)
k=22: a(n) = 15*a(n-1)
k=23: a(n) = 16*a(n-1)
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-6) -a(n-7)
n=2: a(n) = a(n-1) +2*a(n-6) -2*a(n-7) -a(n-12) +a(n-13)
n=3: a(n) = a(n-1) +3*a(n-6) -3*a(n-7) -3*a(n-12) +3*a(n-13) +a(n-18) -a(n-19)
n=4: [order 25]
n=5: [order 29]
n=6: [order 37]
n=7: [order 43]
Empirical quasipolynomials for row n:
n=1: polynomial of degree 1 plus a quasipolynomial of degree 0 with period 6
n=2: polynomial of degree 2 plus a quasipolynomial of degree 1 with period 6
n=3: polynomial of degree 3 plus a quasipolynomial of degree 2 with period 6
n=4: polynomial of degree 4 plus a quasipolynomial of degree 3 with period 6
n=5: polynomial of degree 5 plus a quasipolynomial of degree 4 with period 6
n=6: polynomial of degree 6 plus a quasipolynomial of degree 5 with period 6
n=7: polynomial of degree 7 plus a quasipolynomial of degree 6 with period 6

A103379 a(n) = a(n-11) + a(n-12).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 12, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 21, 27, 31, 32, 32, 32, 32, 32, 32, 32, 33, 38, 48, 58, 63, 64, 64, 64, 64, 64, 64, 65, 71, 86, 106, 121, 127
Offset: 1

Views

Author

Jonathan Vos Post, Feb 15 2005

Keywords

Crossrefs

Programs

  • Maple
    A103379 := proc(n) option remember ; if n <= 12 then 1; else procname(n-11)+procname(n-12) ; fi; end: for n from 1 to 120 do printf("%d,",A103379(n)) ; od: # R. J. Mathar, Aug 30 2008
  • Mathematica
    SemiprimeQ[n_]:=Plus@@FactorInteger[n][[All, 2]]?2; k11; Do[a[n]=1, {n, k+1}]; a[n_]:=a[n]=a[n-k]+a[n-k-1]; A103379=Array[a, 100] A103389=Union[Select[Array[a, 1000], PrimeQ]] A103399=Union[Select[Array[a, 300], SemiprimeQ]] N[Solve[x^12 - x - 1 == 0, x], 111][[2]] (* Ray Chandler and Robert G. Wilson v *)
    LinearRecurrence[{0,0,0,0,0,0,0,0,0,0,1,1},{1,1,1,1,1,1,1,1,1,1,1,1},100] (* Harvey P. Dale, Jan 31 2015 *)

Formula

For n>12: a(n) = a(n-11) + a(n-12). a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = a(7) = a(8) = a(9) = a(10) = a(11) = a(12) = 1.
G.f.: x*(1-x^11) / ((1-x)*(1-x^11-x^12)). - Colin Barker, Mar 26 2013

Extensions

Corrected from a(11) on by R. J. Mathar, Aug 30 2008

A103374 a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = a(7) = 1 and for n>7: a(n) = a(n-6) + a(n-7).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 5, 7, 8, 8, 8, 8, 9, 12, 15, 16, 16, 16, 17, 21, 27, 31, 32, 32, 33, 38, 48, 58, 63, 64, 65, 71, 86, 106, 121, 127, 129, 136, 157, 192, 227, 248, 256, 265, 293, 349, 419, 475, 504, 521, 558, 642, 768, 894, 979, 1025, 1079
Offset: 1

Views

Author

Jonathan Vos Post, Feb 03 2005

Keywords

Comments

k=6 case of the family of sequences whose k=1 case is the Fibonacci sequence A000045, k=2 case is the Padovan sequence A000931 (offset so as to begin 1,1,1), k=3 case is A079398 (offset so as to begin 1,1,1,1), k=4 case is A103372 and k=5 case is A103373.
The general case for integer k>1 is defined: a(1) = a(2) = ... = a(k+1) and for n>(k+1) a(n) = a(n-k) + a(n-[k+1]).
For this k=6 case, the ratio of successive terms a(n)/a(n-1) approaches the unique positive root of the characteristic polynomial: x^7 - x - 1 = 0. This is the real constant 1.1127756842787... (see A230160).
The sequence of prime values in this k=6 case is A103384; the sequence of semiprime values in this k=6 case is A103394.

Examples

			a(32) = 17 because a(32) = a(32-6) + a(32-7) = a(26) + a(25) = 9 + 8 = 17.
		

References

  • Zanten, A. J. van, "The golden ratio in the arts of painting, building and mathematics", Nieuw Archief voor Wiskunde, 4 (17) (1999) 229-245.

Crossrefs

Programs

  • Mathematica
    k = 6; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Array[a, 70]
    RecurrenceTable[{a[n] == a[n - 6] + a[n - 7], a[1] == a[2] == a[3] == a[4] == a[5] == a[6] == a[7] == 1}, a, {n, 70}] (* or *)
    Rest@ CoefficientList[Series[-x (1 + x) (1 + x + x^2) (x^2 - x + 1)/(-1 + x^6 + x^7), {x, 0, 70}], x] (* Michael De Vlieger, Oct 03 2016 *)
    LinearRecurrence[{0,0,0,0,0,1,1},{1,1,1,1,1,1,1},80] (* Harvey P. Dale, Sep 02 2024 *)
  • PARI
    a(n)=([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; 1,1,0,0,0,0,0]^(n-1)*[1;1;1;1;1;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
    
  • PARI
    x='x+O('x^50); Vec(x*(1+x)*(1+x+x^2)*(x^2-x+1)/(1-x^6-x^7)) \\ G. C. Greubel, May 01 2017

Formula

G.f.: x*(1+x)*(1+x+x^2)*(x^2-x+1) / ( 1-x^6-x^7 ). - R. J. Mathar, Aug 26 2011

Extensions

Edited by Ray Chandler and Robert G. Wilson v, Feb 06 2005

A103377 a(1)=a(2)=...=a(10)=1, a(n)=a(n-9)+a(n-10).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 7, 8, 8, 8, 8, 8, 8, 8, 9, 12, 15, 16, 16, 16, 16, 16, 16, 17, 21, 27, 31, 32, 32, 32, 32, 32, 33, 38, 48, 58, 63, 64, 64, 64, 64, 65, 71, 86, 106, 121, 127, 128, 128, 128, 129, 136, 157, 192, 227
Offset: 1

Views

Author

Jonathan Vos Post, Feb 15 2005

Keywords

Comments

k=9 case of the family of sequences whose k=1 case is the Fibonacci sequence A000045, k=2 case is the Padovan sequence A000931 (offset so as to begin 1,1,1), k=3 case is A079398 (offset so as to begin 1,1,1,1), k=4 case is A103372, k=5 case is A103373, k=6 case is A103374, k=7 case is A103375, k=8 case is A103376, k=10 case is A103378 and k=11 case is A103379. The general case for integer k>1 is defined: a(1) = a(2) = ... = a(k+1)= 1 and for n>(k+1) a(n) = a(n-k) + a(n-[k+1]). For this k=9 case, the ratio of successive terms a(n)/a(n-1) approaches the unique positive root of the characteristic polynomial: x^10 - x - 1 = 0. This is the real constant (to 50 digits accuracy): 1.0757660660868371580595995241652758206925302476392 = A230163. Note that x = (1 + x)^(1/10) = (1 + (1 + (1 + ...)^(1/10))^(1/10))^(1/10). The sequence of prime values in this k=9 case is A103387; The sequence of semiprime values in this k=9 case is A103397.
In analogy to the Fibonacci sequence, one might prefer to start this sequence with offset 0. - M. F. Hasler, Sep 19 2015

Examples

			a(83) = 257 because a(83) = a(83-9) + a(83-10). a(74) + a(73) = 129 + 128. This sequence has as elements 5, 17 and 257, which are all Fermat Primes.
		

References

  • A. J. van Zanten, The golden ratio in the arts of painting, building and mathematics, Nieuw Archief voor Wiskunde, vol 17 no 2 (1999) 229-245.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 90] (* Charles R Greathouse IV, Jan 11 2013 *)
  • PARI
    Vec((1+x+x^2)*(1+x^3+x^6)/(1-x^9-x^10)+O(x^99)) \\ Charles R Greathouse IV, Jan 11 2013

Formula

a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = a(7) = a(8) = a(9) = a(10) = 1 and for n>10: a(n) = a(n-9) + a(n-10).
O.g.f.: -x*(x^2+x+1)*(x^6+x^3+1)/(-1+x^9+x^10). - R. J. Mathar, May 02 2008

Extensions

Edited by R. J. Mathar, May 02 2008
Edited by M. F. Hasler, Sep 19 2015

A152828 Triangle read by rows, A007318 rows repeated three times .

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 4, 6, 4, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 5, 10, 10, 5, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 6, 15, 20, 15, 6, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 7, 21
Offset: 0

Views

Author

Philippe Deléham, Dec 13 2008

Keywords

Comments

Diagonal sums : A079398 . Lengths of row are : 1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,... (A008620) .

Examples

			Triangle begins : 1 ; 1 ; 1 ; 1,1 ; 1,1 ; 1,1 ; 1,2,1 ; 1,2,1 ; 1,2,1 ; 1,3,3,1 ; 1,3,3,1 ; 1,3,3,1 ; 1,4,6,4,1 ; ...
		

Crossrefs

Programs

  • Mathematica
    {#,#,#}&/@Table[Binomial[n,k],{n,0,11},{k,0,n}]//Flatten (* Harvey P. Dale, Jul 22 2024 *)

A103378 a(n) = a(n-10) + a(n-11) for n > 11, and a(n) = 1 for 1 <= n <= 11.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 12, 15, 16, 16, 16, 16, 16, 16, 16, 17, 21, 27, 31, 32, 32, 32, 32, 32, 32, 33, 38, 48, 58, 63, 64, 64, 64, 64, 64, 65, 71, 86, 106, 121, 127, 128
Offset: 1

Views

Author

Jonathan Vos Post, Feb 15 2005

Keywords

Examples

			a(52)=17 because a(52)=a(52-10)+a(52-11) = a(42)+a(41) = 9 + 8.
		

Crossrefs

Programs

  • Maple
    A103378 := proc(n) option remember; if n <= 11 then 1 ; else A103378(n-10)+A103378(n-11) ; fi ; end: seq(A103378(n),n=1..78) ; # R. J. Mathar, Nov 22 2007
  • Mathematica
    k=10; Do[a[n]=1, {n, k+1}]; a[n_]:=a[n]=a[n-k]+a[n-k-1]; A103377=Array[a, 100] N[Solve[x^10 - x - 1 == 0, x], 111][[2]]
    LinearRecurrence[Join[Table[0,{9}],{1,1}],Table[1,{11}],80] (* Harvey P. Dale, Aug 14 2013 *)
  • PARI
    Vec((x^10-1)/(x-1)/(1-x^10-x^11)+O(x^80)) \\ M. F. Hasler, Sep 19 2015

Formula

G.f.: x*(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9)/(1-x^10-x^11). - R. J. Mathar, Nov 22 2007

Extensions

Corrected and extended by R. J. Mathar, Nov 22 2007
Edited by M. F. Hasler, Sep 19 2015

A103375 a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = a(7) = a(8) = 1 and for n>8: a(n) = a(n-7) + a(n-8).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 5, 7, 8, 8, 8, 8, 8, 9, 12, 15, 16, 16, 16, 16, 17, 21, 27, 31, 32, 32, 32, 33, 38, 48, 58, 63, 64, 64, 65, 71, 86, 106, 121, 127, 128, 129, 136, 157, 192, 227, 248, 255, 257, 265, 293, 349, 419, 475, 503, 512
Offset: 1

Views

Author

Jonathan Vos Post, Feb 03 2005

Keywords

Comments

k=7 case of the family of sequences whose k=1 case is the Fibonacci sequence A000045, k=2 case is the Padovan sequence A000931 (offset so as to begin 1,1,1), k=3 case is A079398 (offset so as to begin 1,1,1,1), k=4 case is A103372, k=5 case is A103373 and k=6 case is A103374.
The general case for integer k>1 is defined: a(1) = a(2) = ... = a(k+1) and for n>(k+1) a(n) = a(n-k) + a(n-[k+1]).
For this k=7 case, the ratio of successive terms a(n)/a(n-1) approaches the unique positive root of the characteristic polynomial: x^8 - x - 1 = 0. This is the real constant 1.09698155779855981790827896716753708959253010821278671381232885124855898059....
The sequence of prime values in this k=7 case is A103385; the sequence of semiprime values in this k=7 case is A103395.

Examples

			a(30) = 12 because a(30) = a(30-7) + a(30-8) = a(24) + a(23) = 7 + 5 = 12.
		

References

  • Zanten, A. J. van, "The golden ratio in the arts of painting, building and mathematics", Nieuw Archief voor Wiskunde, 4 (17) (1999) 229-245.

Crossrefs

Programs

  • Mathematica
    k = 7; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Array[a, 73]
    LinearRecurrence[{0,0,0,0,0,0,1,1},{1,1,1,1,1,1,1,1},80]
  • PARI
    a(n)=([0,1,0,0,0,0,0,0; 0,0,1,0,0,0,0,0; 0,0,0,1,0,0,0,0; 0,0,0,0,1,0,0,0; 0,0,0,0,0,1,0,0; 0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,1; 1,1,0,0,0,0,0,0]^(n-1)*[1;1;1;1;1;1;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: -x*(1+x+x^2+x^3+x^4+x^5+x^6)/(-1+x^7+x^8). - R. J. Mathar, Dec 14 2009

Extensions

Edited by Ray Chandler and Robert G. Wilson v, Feb 06 2005
Corrected (one more 8 inserted) by R. J. Mathar, Dec 14 2009
Showing 1-10 of 20 results. Next