A103400 Semiprimes in A103380.
4, 9, 15, 21, 33, 38, 58, 65, 86, 106, 121, 129, 265, 511, 2047, 2049, 4097, 4109, 8193, 17855, 19857, 34709, 66233, 104739, 130953, 131209, 140474, 220918, 258931, 511673, 540951
Offset: 1
Programs
-
Maple
A103380 := proc(n) option remember ; if n <= 13 then 1; else procname(n-12)+procname(n-13) ; fi; end: isA103380 := proc(n) option remember ; local i ; for i from 1 do if A103380(i) = n then RETURN(true) ; elif A103380(i) > n then RETURN(false) ; fi; od: end: A103400 := proc(n) option remember ; local a,i ; if n = 1 then 4; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 then if isA103380(a) then RETURN(a) ; fi; fi; od: fi; end: for n from 1 to 37 do printf("%d, ",A103400(n)) ; od: # R. J. Mathar, Aug 30 2008
-
Mathematica
SemiprimeQ[n_]:=Plus@@FactorInteger[n][[All, 2]]?2; Clear[a]; k12; Do[a[n]=1, {n, k+1}]; a[n_]:=a[n]=a[n-k]+a[n-k-1]; A103379=Array[a, 100] A103389=Union[Select[Array[a, 1000], PrimeQ]] A103399=Union[Select[Array[a, 300], SemiprimeQ]] N[Solve[x^12 - x - 1 == 0, x], 111][[2]] (* Program, edit and extension by Ray Chandler and Robert G. Wilson v *)
Extensions
Corrected from a(15) on by R. J. Mathar, Aug 30 2008
Comments