A080663 a(n) = 3*n^2 - 1.
2, 11, 26, 47, 74, 107, 146, 191, 242, 299, 362, 431, 506, 587, 674, 767, 866, 971, 1082, 1199, 1322, 1451, 1586, 1727, 1874, 2027, 2186, 2351, 2522, 2699, 2882, 3071, 3266, 3467, 3674, 3887, 4106, 4331, 4562, 4799, 5042, 5291, 5546, 5807, 6074, 6347, 6626
Offset: 1
References
- Ethan D. Bolker, Elementary Number Theory: An Algebraic Approach. Mineola, New York: Dover Publications (1969, reprinted 2007): p. 7, Problem 6.6.
- E. Grosswald, Topics from the Theory of Numbers, 1966 p 64 problem 11
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..10000
- Cino Hilliard, 3n^2 - 1 not square. [Archived copy as of Apr 11 2008 from web.archive.org]
- Ana Rechtman, Juin 2020, 1er défi, Images des Mathématiques, CNRS, 2020 (in French).
- Leo Tavares, Illustration: Conjoined Trapezoids
- Eric Weisstein's World of Mathematics, Symmetric Polynomial.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[3*n^2-1 : n in [1..50]]; // Wesley Ivan Hurt, Sep 04 2014
-
Maple
A080663 := proc(n) return 3*n^2-1: end proc: seq(A080663(n), n=1..50); # Nathaniel Johnston, Oct 16 2013
-
Mathematica
3*Range[47]^2 - 1 (* Alonso del Arte, Oct 19 2013 *)
-
PARI
list(n) = { for(x=1,n, y = 3*x*x-1; print1(y, ", ") ) } \\ edited by Michel Marcus, Feb 01 2020
-
PARI
Vec(x*(2+5*x-x^2)/(1-x)^3+O(x^66)) \\ Joerg Arndt, Sep 06 2014
Formula
a(n) = -Re((1 + n*i)^3) where i=sqrt(-1). - Gary W. Adamson, Aug 14 2006
a(n) = 3*n^2 - 1. - Stephen Crowley, Jul 06 2009
a(n) = a(n-1) - 3*a(n-2) + 3*a(n-3). - Johannes W. Meijer, Oct 16 2009
G.f.: x*(2 + 5*x - x^2)/(1-x)^3. - Joerg Arndt, Sep 06 2014
a(n) = a(n-1) + 6*n - 3 for n > 1. - Vincenzo Librandi, Aug 08 2010
E.g.f.: 1 + exp(x)*(3*x^2 + 3*x - 1). - Stefano Spezia, Feb 01 2020
From Amiram Eldar, Feb 04 2021: (Start)
Sum_{n>=1} 1/a(n) = (1 - (Pi/sqrt(3))*cot(Pi/sqrt(3)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = ((Pi/sqrt(3))*csc(Pi/sqrt(3)) - 1)/2.
Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(3))*csc(Pi/sqrt(3)).
Product_{n>=1} (1 - 1/a(n)) = csc(Pi/sqrt(3))*sin(sqrt(2/3)*Pi)/sqrt(2). (End)
a(n) = (n-1)*n + (n-1)*(n+1) + n*(n+1), for n >= 1. See the Zak Seidov comment above. - Wolfdieter Lang, Aug 15 2024
Comments