A080961
Fourth binomial transform of A010686 (period 2: repeat 1,5).
Original entry on oeis.org
1, 9, 57, 321, 1713, 8889, 45417, 230001, 1158753, 5820009, 29178777, 146130081, 731358993, 3658920729, 18300980937, 91524036561, 457677578433, 2288560079049, 11443316955897, 57218134461441, 286095321353073, 1430490553902969, 7152494610927657, 35762598578876721
Offset: 0
G.f. = 1 + 9*x + 57*x^2 + 321*x^3 + 1713*x^4 + 8889*x^5 + 45417*x^6 + 230001*x^7 + ...
-
binomtf:=func< V | [ &+[ Binomial(i-1, k-1)*V[k]: k in [1..i] ]: i in [1..#V] ] >;
binomtf(binomtf(binomtf(binomtf(&cat[ [1, 5]: n in [1..11] ])))); // Klaus Brockhaus, Nov 26 2009
-
[3*5^n - 2*3^n: n in [0..30]]; // Vincenzo Librandi, Dec 07 2012
-
A080961:=n->3*5^n-2*3^n: seq(A080961(n), n=0..30); # Wesley Ivan Hurt, Dec 08 2016
-
CoefficientList[Series[(1 + x)/((1 - 3*x) * (1 - 5*x)), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 07 2012 *)
A080962
5th binomial transform of the periodic sequence (1,6,1,1,6,1...).
Original entry on oeis.org
1, 11, 86, 596, 3896, 24656, 153056, 938816, 5714816, 34616576, 209010176, 1259303936, 7576795136, 45544656896, 273603485696, 1642963091456, 9863147257856, 59200358383616, 355288049647616, 2132071895269376, 12793805761150976, 76768332125044736, 460631982982823936
Offset: 0
-
[(7/2)*6^n-(5/2)*4^n: n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
-
CoefficientList[Series[(1 + x) / ((1 - 4 x) (1 - 6 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
LinearRecurrence[{10,-24},{1,11},20] (* Harvey P. Dale, Sep 06 2016 *)
A171478
a(n) = 6*a(n-1) - 8*a(n-2) + 2 for n > 1; a(0) = 1, a(1) = 8.
Original entry on oeis.org
1, 8, 42, 190, 806, 3318, 13462, 54230, 217686, 872278, 3492182, 13974870, 55911766, 223671638, 894735702, 3579041110, 14316361046, 57265837398, 229064136022, 916258116950, 3665035613526, 14660148745558, 58640607565142
Offset: 0
-
a:=[1,8];; for n in [3..25] do a[n]:=6*a[n-1]-8*a[n-2]+2; od; a; # Muniru A Asiru, Mar 22 2018
-
[(10*4^n-9*2^n+2)/3: n in [0..30]]; // Vincenzo Librandi, Jul 18 2011
-
a:= proc(n) option remember: if n = 0 then 1 elif n = 1 then 8 elif n >= 2 then 6*procname(n-1) - 8*procname(n-2) + 2 fi; end:
seq(a(n), n = 0..25); # Muniru A Asiru, Mar 22 2018
-
RecurrenceTable[{a[0]==1,a[1]==8,a[n]==6a[n-1]-8a[n-2]+2},a,{n,30}] (* or *) LinearRecurrence[{7,-14,8},{1,8,42},30] (* Harvey P. Dale, May 04 2012 *)
-
{m=23; v=concat([1, 8], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]+2); v}
A171475
a(n) = 6*a(n-1) - 8*a(n-2), for n > 2, with a(0) = 1, a(1) = 6, a(2) = 27.
Original entry on oeis.org
1, 6, 27, 114, 468, 1896, 7632, 30624, 122688, 491136, 1965312, 7862784, 31454208, 125822976, 503304192, 2013241344, 8053014528, 32212156416, 128848822272, 515395682304, 2061583515648, 8246335635456, 32985345687552
Offset: 0
-
I:=[6,27]; [1] cat [n le 2 select I[n] else 6*Self(n-1) - 8*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 02 2021
-
Table[If[n==0, 1, 3*(5*4^n - 2*2^n)/8],{n,0,30}] (* G. C. Greubel, Dec 02 2021 *)
LinearRecurrence[{6,-8},{1,6,27},30] (* Harvey P. Dale, Oct 25 2023 *)
-
{m=21; v=concat([1, 6, 27], vector(m-3)); for(n=4, m, v[n]=6*v[n-1]-8*v[n-2]); v}
-
[1]+[3*(5*4^n - 2*2^n)/8 for n in (1..30)] # G. C. Greubel, Dec 02 2021
Showing 1-4 of 4 results.
Comments