cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A016170 Expansion of 1/((1-6*x)*(1-8*x)).

Original entry on oeis.org

1, 14, 148, 1400, 12496, 107744, 908608, 7548800, 62070016, 506637824, 4113568768, 33271347200, 268347559936, 2159841173504, 17357093552128, 139326933401600, 1117436577120256, 8956419276406784, 71752914167922688
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 14^(n-1) else 14*Self(n-1) -48*Self(n-2): n in [1..31]]; // G. C. Greubel, Nov 10 2024
    
  • Maple
    A016170:=n->4*8^n-3*6^n: seq(A016170(n), n=0..30); # Wesley Ivan Hurt, May 03 2017
  • Mathematica
    CoefficientList[Series[1/((1-6x)(1-8x)),{x,0,30}],x] (* or *) LinearRecurrence[{14,-48},{1,14},30] (* Harvey P. Dale, Dec 08 2011 *)
  • PARI
    Vec(1/((1-6*x)*(1-8*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 24 2012
    
  • SageMath
    A016170=BinaryRecurrenceSequence(14,-48,1,14)
    [A016170(n) for n in range(31)] # G. C. Greubel, Nov 10 2024

Formula

a(n) = Sum_{k=1..n} 2^(n-1)*3^(n-k)*binomial(n,k). - Zerinvary Lajos, Sep 24 2006
From R. J. Mathar, Sep 18 2008: (Start)
a(n) = 4*8^n - 3*6^n = A081201(n+1).
Binomial transform of A081033. (End)
a(n) = 8*a(n-1) + 6^n. - Vincenzo Librandi, Feb 09 2011
a(0)=1, a(1)=14, a(n) = 14*a(n-1) - 48*a(n-2). - Harvey P. Dale, Dec 08 2011
E.g.f.: 4*exp(8*x) - 3*exp(6*x). - G. C. Greubel, Nov 10 2024

A080962 5th binomial transform of the periodic sequence (1,6,1,1,6,1...).

Original entry on oeis.org

1, 11, 86, 596, 3896, 24656, 153056, 938816, 5714816, 34616576, 209010176, 1259303936, 7576795136, 45544656896, 273603485696, 1642963091456, 9863147257856, 59200358383616, 355288049647616, 2132071895269376, 12793805761150976, 76768332125044736, 460631982982823936
Offset: 0

Views

Author

Paul Barry, Mar 03 2003

Keywords

Crossrefs

Programs

  • Magma
    [(7/2)*6^n-(5/2)*4^n: n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
  • Mathematica
    CoefficientList[Series[(1 + x) / ((1 - 4 x) (1 - 6 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
    LinearRecurrence[{10,-24},{1,11},20] (* Harvey P. Dale, Sep 06 2016 *)

Formula

a(n) = 6*a(n-1) + 5*4^(n-1).
a(n) = (7/2)*6^n - (5/2)*4^n.
G.f.: (1+x)/((1-4*x)*(1-6*x)). - Vincenzo Librandi, Aug 06 2013
E.g.f.: exp(4*x)*(7*exp(2*x) - 5). - Stefano Spezia, Jul 23 2024

A081034 7th binomial transform of the periodic sequence (1,8,1,1,8,1...).

Original entry on oeis.org

1, 15, 162, 1548, 13896, 120240, 1016352, 8457408, 69618816, 568707840, 4620206592, 37384915968, 301618907136, 2428188733440, 19516934725632, 156684026953728, 1256763510521856, 10073855853527040, 80709333444329472, 646385587251314688, 5175350216190590976, 41428394838605168640
Offset: 0

Views

Author

Paul Barry, Mar 03 2003

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0]==1,a[n]==8a[n-1]+7*6^(n-1)},a,{n,20}] (* or *) LinearRecurrence[{14,-48},{1,15},20] (* Harvey P. Dale, Jun 16 2013 *)

Formula

a(n) = 8*a(n-1) + 7*6^(n-1).
a(n) = (9/2)*8^n - (7/2)*6^n.
From Harvey P. Dale, Jun 16 2013: (Start)
a(0)=1, a(1)=15, a(n) = 14*a(n-1)-48*a(n-2).
G.f.: (x+1)/(48*x^2-14*x+1). (End)
E.g.f.: exp(6*x)*(9*exp(2*x) - 7)/2. - Stefano Spezia, Jul 23 2024
Showing 1-3 of 3 results.