cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081068 a(n) = (Lucas(4*n+2) + 2)/5, or Fibonacci(2*n+1)^2, or A081067(n)/5.

Original entry on oeis.org

1, 4, 25, 169, 1156, 7921, 54289, 372100, 2550409, 17480761, 119814916, 821223649, 5628750625, 38580030724, 264431464441, 1812440220361, 12422650078084, 85146110326225, 583600122205489, 4000054745112196, 27416783093579881
Offset: 0

Views

Author

R. K. Guy, Mar 04 2003

Keywords

Comments

Indices of 12-gonal numbers which are also squares (A342709). - Bernard Schott, Mar 19 2021
Values of y in solutions of x^2 = 5*y^2 - 4*y in positive integers. See A360467 for how this relates to a problem regarding the subdivision of a square into four triangles of integer area. - Alexander M. Domashenko, Feb 26 2023
And the corresponding x values of x^2 = 5*y^2 - 4*y are in A033890. - Bernard Schott, Feb 26 2023

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 19.
  • Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.

Crossrefs

Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers), A081067.

Programs

  • Magma
    I:=[1, 4, 25]; [n le 3 select I[n] else 8*Self(n-1)-8*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 26 2012
    
  • Magma
    [(Lucas(4*n+2) + 2)/5: n in [0..30]]; // G. C. Greubel, Dec 17 2017
    
  • Maple
    luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 40 do printf(`%d,`,(luc(4*n+2)+2)/5) od: # James Sellers, Mar 05 2003
  • Mathematica
    CoefficientList[Series[-(1-4*x+x^2)/((x-1)*(x^2-7*x+1)),{x,0,40}],x] (* or *) LinearRecurrence[{8,-8,1},{1,4,25},50] (* Vincenzo Librandi, Jun 26 2012 *)
    Table[(LucasL[4*n+2] + 2)/5, {n,0,30}] (* G. C. Greubel, Dec 17 2017 *)
  • PARI
    main(size)={ return(concat([1],vector(size,n,fibonacci(2*n+1)^2))) } /* Anders Hellström, Jul 11 2015 */
    
  • PARI
    for(n=0,30, print1(fibonacci(2*n+1)^2, ", ")) \\ G. C. Greubel, Dec 17 2017

Formula

a(n) = A001519(n+1)^2 = A122367(n)^2 = A058038(n) + 1.
a(n) = A103433(n+1) - A103433(n).
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
a(n) = Fibonacci(2*n)*Fibonacci(2*n+2) +1. - Gary Detlefs, Apr 01 2012
G.f.: (1-4*x+x^2)/((1-x)*(x^2-7*x+1)). - Colin Barker, Jun 26 2012
Sum_{n>=0} 1/(a(n) + 1) = 1/3*sqrt(5). - Peter Bala, Nov 30 2013
Sum_{n>=0} 1/a(n) = sqrt(5) * Sum_{n>=1} (-1)^(n+1)*n/Fibonacci(2*n) (Jennings, 1994). - Amiram Eldar, Oct 30 2020
Product_{n>=1} (1 + 1/a(n)) = phi^2/2 (A239798), where phi is the golden ratio (A001622) (Davlianidze, 2020). - Amiram Eldar, Dec 01 2021

Extensions

More terms from James Sellers, Mar 05 2003