A081068 a(n) = (Lucas(4*n+2) + 2)/5, or Fibonacci(2*n+1)^2, or A081067(n)/5.
1, 4, 25, 169, 1156, 7921, 54289, 372100, 2550409, 17480761, 119814916, 821223649, 5628750625, 38580030724, 264431464441, 1812440220361, 12422650078084, 85146110326225, 583600122205489, 4000054745112196, 27416783093579881
Offset: 0
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 19.
- Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876 (See Corollary 1 (vii)).
- Pridon Davlianidze, Problem B-1264, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 58, No. 1 (2020), p. 82; It's All About Catalan, Solution to Problem B-1264, ibid., Vol. 59, No. 1 (2021), pp. 87-88.
- Derek Jennings, On Sums of Reciprocals of Fibonacci and Lucas Numbers, The Fibonacci Quarterly, Vol. 32, No. 1 (1994), pp. 18-21.
- Giovanni Lucca, Integer Sequences and Circle Chains Inside a Circular Segment, Forum Geometricorum, Vol. 18 (2018), 47-55.
- Index entries for linear recurrences with constant coefficients, signature (8,-8,1).
Crossrefs
Programs
-
Magma
I:=[1, 4, 25]; [n le 3 select I[n] else 8*Self(n-1)-8*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 26 2012
-
Magma
[(Lucas(4*n+2) + 2)/5: n in [0..30]]; // G. C. Greubel, Dec 17 2017
-
Maple
luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 40 do printf(`%d,`,(luc(4*n+2)+2)/5) od: # James Sellers, Mar 05 2003
-
Mathematica
CoefficientList[Series[-(1-4*x+x^2)/((x-1)*(x^2-7*x+1)),{x,0,40}],x] (* or *) LinearRecurrence[{8,-8,1},{1,4,25},50] (* Vincenzo Librandi, Jun 26 2012 *) Table[(LucasL[4*n+2] + 2)/5, {n,0,30}] (* G. C. Greubel, Dec 17 2017 *)
-
PARI
main(size)={ return(concat([1],vector(size,n,fibonacci(2*n+1)^2))) } /* Anders Hellström, Jul 11 2015 */
-
PARI
for(n=0,30, print1(fibonacci(2*n+1)^2, ", ")) \\ G. C. Greubel, Dec 17 2017
Formula
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
a(n) = Fibonacci(2*n)*Fibonacci(2*n+2) +1. - Gary Detlefs, Apr 01 2012
G.f.: (1-4*x+x^2)/((1-x)*(x^2-7*x+1)). - Colin Barker, Jun 26 2012
Sum_{n>=0} 1/(a(n) + 1) = 1/3*sqrt(5). - Peter Bala, Nov 30 2013
Sum_{n>=0} 1/a(n) = sqrt(5) * Sum_{n>=1} (-1)^(n+1)*n/Fibonacci(2*n) (Jennings, 1994). - Amiram Eldar, Oct 30 2020
Product_{n>=1} (1 + 1/a(n)) = phi^2/2 (A239798), where phi is the golden ratio (A001622) (Davlianidze, 2020). - Amiram Eldar, Dec 01 2021
Extensions
More terms from James Sellers, Mar 05 2003
Comments