cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A081352 Main diagonal of square maze arrangement of natural numbers A081349.

Original entry on oeis.org

1, 7, 11, 21, 29, 43, 55, 73, 89, 111, 131, 157, 181, 211, 239, 273, 305, 343, 379, 421, 461, 507, 551, 601, 649, 703, 755, 813, 869, 931, 991, 1057, 1121, 1191, 1259, 1333, 1405, 1483, 1559, 1641, 1721, 1807, 1891, 1981, 2069, 2163, 2255, 2353, 2449, 2551
Offset: 0

Views

Author

Paul Barry, Mar 19 2003

Keywords

Comments

Conjecture: let a and b be integers such that 0 < a < b so that 0 < a/b is a proper fraction. Define the map f(a,b,D) = a/b + gcd(a,b)/D. Of course, all such a/b can be partially ordered by value, i.e., 1/2 = 0.5 < 2/3 = 4/6 = 6/9 = 0.6666... < 3/4 = 6/8 = 0.75 < 4/5 = 0.8 etc. The map f appears to specify a total strict order on the co-domain for all a/b that is consistent with the given partial order of the domain, i.e., the partial order remains intact, while equivalent fractions are given a total strict order themselves. Moreover, equivalent fractions are strictly ordered by numerator (or denominator), e.g., 1/2 < 2/4 < 3/6 etc. The conditions are that for n >= 4 all of the fractions with denominator b <= n are listed and the minimum integer value of D to achieve the total strict order of the co-domain is 2*C(n-1,2) - (-1)^(n-1). So, a(n-3) = D for n >= 4. Example: given n = 4, we have D = 2*(4-1,2) - (-1)^(4-1) = 2*3 + 1 = 7 = a(4-3) = a(1). Partial order of domain. 1/4 < 1/3 < 1/2 = 2/4 < 2/3 < 3/4. Total order of co-domain. f(1,4,7) = 1/4 + 1/7 = 33/84 < f(1,3,7) = 1/3 + 1/7 = 40/84 < f(1,2,7) = 1/2 + 1/7 = 54/84 < f(2,4,7) = 2/4 + 2/7 = 66/84 < f(2,3,7) = 2/3 + 2/7 = 68/84 < f(3,4,7) = 3/4 + 1/7 = 75/84. Observe that if D = 6, then f(2,4,6) = 2/4 + 2/6 = 10/12 = f(2,3,6) = 2/3 + 1/6. Computation shows the same failure to achieve total strict order of the co-domain for D = 2..5. (As a >= 1, then b >=2, from the above). Computation also shows that the conjecture holds for n = 4..17. - Ross La Haye, Oct 02 2016

Crossrefs

Programs

  • Magma
    I:=[1,7,11,21]; [n le 4 select I[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 08 2013
    
  • Maple
    A081352:=n->(n + 1)*(n + 2) - (-1)^n; seq(A081352(n), n=0..50); # Wesley Ivan Hurt, Feb 26 2014
  • Mathematica
    CoefficientList[Series[(1 + 5 x - 3 x^2 + x^3) / ((1 + x) (1 - x)^3), {x, 0, 60}], x] (* Vincenzo Librandi, Aug 08 2013 *)
  • PARI
    x='x+O('x^99); Vec((1+5*x-3*x^2+x^3)/((1+x)*(1-x)^3)) \\ Altug Alkan, Mar 26 2016

Formula

a(n) = (n + 1)*(n + 2) - (-1)^n = 2*C(n+2, 2) - (-1)^n.
G.f.: (1 +5*x -3*x^2 +x^3) / ((1+x)*(1-x)^3). [Bruno Berselli, Aug 01 2010]
a(n) -2*a(n-1) +2*a(n-3) -a(n-4) = 0 with n>3. [Bruno Berselli, Aug 01 2010]
a(n) = 3*A000982(n + 2) - A000982(n + 3). - Miko Labalan, Mar 26 2016
a(n) = A116940(n) + A236283(n + 1). - Miko Labalan, Dec 04 2016
a(n) = (2*n^2 + 6*n - 2*(-1)^n + (-1)^(2*n) + 3)/2. - Kritsada Moomuang, Oct 24 2019

A081349 Square maze arrangement of the natural numbers, read by antidiagonals.

Original entry on oeis.org

1, 2, 8, 3, 7, 9, 4, 6, 10, 24, 15, 5, 11, 23, 25, 16, 14, 12, 22, 26, 48, 35, 17, 13, 21, 27, 47, 49, 36, 34, 18, 20, 28, 46, 50, 80, 63, 37, 33, 19, 29, 45, 51, 79, 81, 64, 62, 38, 32, 30, 44, 52, 78, 82, 120, 99, 65, 61, 39, 31, 43, 53, 77, 83, 119, 121, 100, 98, 66, 60, 40
Offset: 0

Views

Author

Paul Barry, Mar 19 2003

Keywords

Examples

			Starting with 1,2,3,4, turn (LL) and then repeat (RRR)(LLL) to get:
.
   1   8---9  24 ...
   |   |   |   |
   2   7  10  23 ...
   |   |   |   |
   3   6  11  22 ...
   |   |   |   |
   4---5  12  21 ...
           |   |
  15--14--13  20 ...
   |           |
  16--17--18--19 ...
  ...
		

Crossrefs

First row is A081351. First column is A081350.
Main diagonal is A081352. Main subdiagonal is 2*A000217(n+1).

A081351 First row in square maze array of natural numbers A081349.

Original entry on oeis.org

1, 8, 9, 24, 25, 48, 49, 80, 81, 120, 121, 168, 169, 224, 225, 288, 289, 360, 361, 440, 441, 528, 529, 624, 625, 728, 729, 840, 841, 960, 961, 1088, 1089, 1224, 1225, 1368, 1369, 1520, 1521, 1680, 1681, 1848, 1849, 2024, 2025, 2208, 2209, 2400, 2401, 2600
Offset: 0

Views

Author

Paul Barry, Mar 19 2003

Keywords

Comments

Interleaves the odd squares A016754 with 8 times the triangular numbers A000217.

Crossrefs

Programs

Formula

a(n) = (n+1)*(n+2)-(n+1)*(-1)^n = 2*C(n+2,2)-C(n+1,1)*(-1)^n.
G.f.: (x^3-x^2+7*x+1)/((1-x)^3*(1+x)^2). [Colin Barker, Sep 03 2012]

A081353 Diagonal of square maze arrangement of natural numbers A081349.

Original entry on oeis.org

3, 5, 13, 19, 31, 41, 57, 71, 91, 109, 133, 155, 183, 209, 241, 271, 307, 341, 381, 419, 463, 505, 553, 599, 651, 701, 757, 811, 871, 929, 993, 1055, 1123, 1189, 1261, 1331, 1407, 1481, 1561, 1639, 1723, 1805, 1893, 1979, 2071, 2161, 2257, 2351, 2451, 2549
Offset: 0

Views

Author

Paul Barry, Mar 19 2003

Keywords

Crossrefs

Bisections are in A054554, A125202.

Programs

Formula

a(n) = (n+1)*(n+2)+(-1)^n = 2*binomial(n+2,2)+(-1)^n.
G.f.: (3-x)*(1+x^2)/((1-x)^3*(1+x)). [Colin Barker, Sep 03 2012]
From Wesley Ivan Hurt, Aug 09 2015: (Start)
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4), n>4.
a(n) = n^2+3n+3 if n is even, otherwise n^2+3n+1.
a(n) = A137932(n+3) - A109613(n+1). (End)

A341779 Numbers k such that k and k+1 are both anti-tau numbers (A046642).

Original entry on oeis.org

3, 4, 15, 16, 64, 100, 195, 196, 255, 256, 483, 484, 676, 783, 784, 1023, 1024, 1155, 1156, 1295, 1296, 1443, 1444, 1599, 1600, 1936, 2116, 2703, 2704, 3363, 3364, 3844, 4096, 4623, 4624, 4899, 4900, 5183, 5184, 5476, 5776, 6399, 6400, 6723, 6724, 7395, 7396
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2021

Keywords

Comments

Since the even anti-tau numbers (A268066) are square numbers, all the terms are either of the form 4*k^2 - 1 or 4*k^2.

Examples

			3 is a term since 3 and 4 are both anti-tau numbers: gcd(3, tau(3)) = gcd(3, 2) = 1 and gcd(4, tau(4)) = gcd(4, 3) = 1.
		

Crossrefs

Subsequence of A046642 and A081350.

Programs

  • Mathematica
    antiTauQ[n_] := CoprimeQ[n, DivisorSigma[0, n]]; s = {}; Do[k = 4*n^2; If[antiTauQ[k], If[antiTauQ[k - 1], AppendTo[s, k - 1]]; If[antiTauQ[k + 1], AppendTo[s, k]]], {n, 1, 50}]; s
Showing 1-5 of 5 results.