cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082044 Main diagonal of A082043: a(n) = n^4 + 2*n^2 + 1.

Original entry on oeis.org

1, 4, 25, 100, 289, 676, 1369, 2500, 4225, 6724, 10201, 14884, 21025, 28900, 38809, 51076, 66049, 84100, 105625, 131044, 160801, 195364, 235225, 280900, 332929, 391876, 458329, 532900, 616225, 708964, 811801, 925444, 1050625, 1188100
Offset: 0

Views

Author

Paul Barry, Apr 03 2003

Keywords

Comments

a(n) = longest side b of all integer-sided triangles with sides a <= b <= c and inradius n >= 1. Triangle has sides (n^2+2, n^4+2*n^2+1, n^4+3*n^2+1).

Examples

			G.f. = 1 + 4*x + 25*x^2 + 100*x^3 + 289*x^4 + 676*x^5 + 1369*x^6 + ...
		

Crossrefs

See A120062 for sequences related to integer-sided triangles with integer inradius n.

Programs

  • Magma
    [(n^2+1)^2: n in [0..40]]; // G. C. Greubel, Dec 24 2022
    
  • Maple
    seq(fibonacci(3,n)^2,n=0..33); # Zerinvary Lajos, Apr 09 2008
  • Mathematica
    Fibonacci[3,Range[0,40]]^2 (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,4,25,100,289},40] (* Harvey P. Dale, Feb 27 2015 *)
  • PARI
    a(n) = n^4+2*n^2+1; \\ Michel Marcus, Jan 22 2016
    
  • SageMath
    [(n^2+1)^2 for n in range(41)] # G. C. Greubel, Dec 24 2022

Formula

a(n) = n^4 + 2*n^2 + 1.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Feb 27 2015
a(n) = (4*A000217(n-1)^2 + 2*A002061(n))^2 / a(n-1). - Bruce J. Nicholson, Apr 17 2017
a(n) = A002522(n)^2 = (n^2 + 1)^2 = a(-n) for all n in Z. - Michael Somos, Apr 17 2017
G.f.: (1 - x + 15*x^2 + 5*x^3 + 4*x^4) / (1 - x)^5. - Michael Somos, Apr 17 2017
From Amiram Eldar, Nov 02 2021: (Start)
Sum_{n>=0} 1/a(n) = Pi^2*csch(Pi)^2/4 + Pi*coth(Pi)/4 + 1/2.
Sum_{n>=0} (-1)^n/a(n) = Pi^2*csch(Pi)*coth(Pi)/4 + Pi*csch(Pi)/4 + 1/2. (End)
E.g.f.: (1 + 3*x + 9*x^2 + 6*x^3 + x^4)*exp(x). - G. C. Greubel, Dec 24 2022