cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082245 Sum of (n-1)-th powers of divisors of n.

Original entry on oeis.org

1, 3, 10, 73, 626, 8052, 117650, 2113665, 43053283, 1001953638, 25937424602, 743375541244, 23298085122482, 793811662272744, 29192932133689220, 1152956690052710401, 48661191875666868482, 2185928253847184914509
Offset: 1

Views

Author

Reinhard Zumkeller, May 22 2003

Keywords

Comments

a(n) = t(n,n-1), t as defined in A082771;
a(1)=A000005(1), a(2)=A000203(2), a(3)=A001157(3), a(4)=A001158(4), a(5)=A001159(5), a(6)=A001160(6), a(7)=A013954(7), a(8)=A013955(8).

Examples

			a(6) = 1^5 + 2^5 + 3^5 + 6^5 = 1 + 32 + 243 + 7776 = 8052.
		

Crossrefs

Programs

  • Magma
    [DivisorSigma(n-1, n): n in [1..20]]; // G. C. Greubel, Nov 02 2018
  • Mathematica
    Table[Total[Divisors[n]^(n-1)], {n,18}] (* T. D. Noe, Oct 25 2006 *)
    Table[DivisorSigma[n-1,n], {n,1,20}] (* G. C. Greubel, Nov 02 2018 *)
  • PARI
    a(n) = sigma(n, n-1); \\ Michel Marcus, Nov 07 2017
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^(1/k^2))))) \\ Seiichi Manyama, Jun 23 2019
    
  • Sage
    [sigma(n,(n-1))for n in range(1,19)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>=1} k^(k-1)*x^k/(1 - (k*x)^k). - Ilya Gutkovskiy, Nov 02 2018
L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)^(1/k^2)) = Sum_{k>=1} a(k)*x^k/k. - Seiichi Manyama, Jun 23 2019
Limit_{n->oo} a(n)/A023887(n-1) = e (A001113) (Sugunamma, 1960). - Amiram Eldar, Apr 15 2021

Extensions

Corrected by T. D. Noe, Oct 25 2006