cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A033715 Number of integer solutions (x, y) to the equation x^2 + 2y^2 = n.

Original entry on oeis.org

1, 2, 2, 4, 2, 0, 4, 0, 2, 6, 0, 4, 4, 0, 0, 0, 2, 4, 6, 4, 0, 0, 4, 0, 4, 2, 0, 8, 0, 0, 0, 0, 2, 8, 4, 0, 6, 0, 4, 0, 0, 4, 0, 4, 4, 0, 0, 0, 4, 2, 2, 8, 0, 0, 8, 0, 0, 8, 0, 4, 0, 0, 0, 0, 2, 0, 8, 4, 4, 0, 0, 0, 6, 4, 0, 4, 4, 0, 0, 0, 0, 10, 4, 4, 0, 0, 4, 0, 4, 4, 0, 0, 0, 0, 0, 0, 4, 4, 2, 12, 2, 0, 8, 0
Offset: 0

Views

Author

Keywords

Comments

Theta series of lattice C2 with Gram matrix [ 1, 0; 0, 2]. a(n) is nonzero if and only if n is in A002479. - Michael Somos, Dec 15 2011
Number 17 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Denoted by |a_4(n)| in Kassel and Reutenauer 2015. - Michael Somos, Jun 16 2015

Examples

			G.f. = 1 + 2*q + 2*q^2 + 4*q^3 + 2*q^4 + 4*q^6 + 2*q^8 + 6*q^9 + 4*q^11 + 4*q^12 + ...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 114 Entry 8(iii).
  • J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, 1999, p. 102, eq. 9.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 3, p. 19.
  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.24).
  • J. W. L. Glaisher, Table of the excess of the number of (8k+1)- and (8k+3)-divisors of a number over the number of (8k+5)- and (8k+7)-divisors, Messenger Math., 31 (1901), 82-91.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 346.

Crossrefs

Number of integer solutions to f(x,y) = n where f(x,y) is the principal binary quadratic form with discriminant d: A004016 (d=-3), A004018 (d=-4), A002652 (d=-7), this sequence (d=-8), A028609 (d=-11), A028641 (d=-19), A138811 (d=-43).

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 105); A[1] + 2*A[2] + 2*A[3]; /* Michael Somos, Aug 29 2014 */
  • Maple
    d:=proc(r,m,n) local i,t1; t1:=0; for i from 1 to n do if n mod i = 0 and i-r mod m = 0 then t1:=t1+1; fi; od: t1; end; [seq(2*(d(1,8,n)+d(3,8,n)-d(5,8,n)-d(7,8,n)),n=1..120)];
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2], {q, 0, n}]; (* Michael Somos, Sep 09 2012 *)
    a[ n_] := If[ n < 1, Boole[ n == 0], 2 DivisorSum[ n, KroneckerSymbol[ -2, #] &]]; (* Michael Somos, Aug 29 2014 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^2] QPochhammer[ q^4])^3 / (QPochhammer[ q] QPochhammer[ q^8])^2, {q, 0, n}]; (* Michael Somos, Aug 29 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, 2 * (issquare(n) - issquare(2*n) + 2 * sum( i=1, sqrtint(n\2), issquare(n - 2*i^2))))};
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * sumdiv( n, d, kronecker( -2, d)))}; /* Michael Somos, Aug 23 2005 */
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * qfrep([ 1, 0; 0, 2], n)[n])}; /* Michael Somos, Aug 23 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^-2 * eta(x^2 + A)^3 * eta(x^4 + A)^3 * eta(x^8 + A)^-2, n))};
    
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1,2]); Q.representation_number_list(104); # Peter Luschny, Jun 20 2014
    

Formula

Fine gives an explicit formula for a(n) in terms of the divisors of n.
Euler transform of period 8 sequence [ 2, -1, 2, -4, 2, -1, 2, -2, ...].
Expansion of (eta(q^2) * eta(q^4))^3 / (eta(q) * eta(q^8))^2 in powers of q.
Coefficients in expansion of Sum_{i,j=-inf..inf} q^(i^2 + 2*j^2).
G.f. = s(2)^3*s(4)^3/(s(1)^2*s(8)^2), where s(k) := subs(q=q^k, eta(q)), where eta(q) is Dedekind's function, cf. A010815. [Fine]
G.f.: 1 + 2 * Sum_{k>0} Kronecker(-2, n) * x^k / (1 - x^k) = 1 + 2 * Sum_{k>0} (x^k + x^(3*k)) / (1 + x^(4*k)).
G.f.: theta_3(q) * theta_3(q^2) = Product_{k>0} (1 + x^(2*k)) * ((1 + x^k) * (1 - x^(2*k)) / (1 + x^(4*k)))^2.
From Michael Somos, Oct 23 2006: (Start)
Moebius transform is period 8 sequence [ 2, 0, 2, 0, -2, 0, -2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u1 - 3*u3) * (u1 - u2 - u3 + u6) - (u2 - 3*u6) * (u1 - 2*u2 - u3 + 2*u6). (End)
a(n) = 2 * A002325(n) unless n = 0.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 8^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 09 2012
From Michael Somos, Aug 29 2014: (Start)
Expansion of phi(q) * phi(q^2) in powers of q where phi() is a Ramanujan theta function.
a(2*n) = a(n). a(2*n + 1) = 2 * A113411(n). (End)
From Michael Somos, May 17 2015: (Start)
a(n) = A028572(4*n) = A133692(2*n) = A139093(8*n) = A226225(8*n) = A226240(4*n) = A242609(4*n) = A245572(4*n) / 3 = (-1)^floor((n + 1)/2) * A082564(n).
a(8*n + 5) = a(8*n + 7) = 0. a(8*n + 1) = 2 * A112603(n). a(8*n + 3) = 4 * A033761(n). (End)
a(0) = 1, a(n) = 2 * b(n) for n > 0, where b() is multiplicative with b(2^e) = 1, b(p^e) = e + 1 if p == 1, 3 (mod 8), b(p^e) = (1 + (-1)^e)/2 if p == 5, 7 (mod 8). - Jianing Song, Sep 04 2018 [Corrected by Jeremy Lovejoy, Nov 12 2024]
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = Pi/sqrt(2) = 2.221441... (A247719). - Amiram Eldar, Dec 16 2023

A033761 Product t2(q^d); d | 2, where t2 = theta2(q)/(2*q^(1/4)).

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 2, 1, 1, 1, 1, 0, 3, 1, 0, 2, 1, 1, 1, 0, 1, 3, 1, 2, 0, 0, 1, 2, 1, 0, 3, 1, 0, 2, 1, 1, 2, 0, 1, 0, 2, 1, 2, 1, 0, 3, 0, 1, 3, 0, 0, 2, 1, 0, 0, 1, 2, 4, 1, 1, 0, 1, 1, 1, 0, 1, 3, 1, 1, 0, 1, 1, 2, 1, 0, 3, 0, 1, 4, 0, 1, 0, 1, 0, 2, 1, 1, 2, 0, 0, 2, 2, 1, 3, 0, 0, 2, 2, 1, 0, 2, 1, 0, 1, 0
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also the number of representations of n as the sum of a triangular number and twice a triangular number. - James Sellers, Dec 21 2005
Also the number of positive odd solutions to equation x^2 + 2*y^2 = 8*n + 3. - Seiichi Manyama, May 28 2017

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + x^5 + 2*x^6 + x^7 + x^8 + x^9 + x^10 + 3*x^12 + ...
G.f. = q^3 + q^11 + q^19 + 2*q^27 + q^43 + 2*q^51 + q^59 + q^67 + q^75 + q^83 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(32), 1), 840); A[4] + A[12]; /* Michael Somos, Jan 31 2015 */
  • Maple
    sigmamr := proc(n,m,r) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d,m) = r then a := a+1 ; end if; end do: a; end proc:
    A002325 := proc(n) sigmamr(n,8,1)+sigmamr(n,8,3)-sigmamr(n,8,5)-sigmamr(n,8,7) ; end proc:
    A033761 := proc(n) A002325(8*n+3)/2 ; end proc:
    seq(A033761(n),n=0..90) ; # R. J. Mathar, Mar 23 2011
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^2] / 4, {q, 0, 2 n + 3/4}]; (* Michael Somos, Nov 16 2011 *)
    QP = QPochhammer; s = QP[q^2]*(QP[q^4]^2/QP[q]) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, adapted from PARI *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^2 / eta(x + A), n))}; /* Michael Somos, Jul 05 2006 */
    

Formula

Euler transform of period 4 sequence [1, 0, 1, -2, ...]. - Vladeta Jovovic, Sep 14 2004
Expansion of psi(q) * psi(q^2) in powers of q where psi() is a Ramanujan theta function.
Expansion of q^(-3/8) * eta(q^2) * eta^2(q^4) / eta(q) in powers of q. - Michael Somos, Jul 05 2006
Expansion of q^(-3/4) * (theta_2(q) * theta_2(q^2)) / 4 in powers of q^2. - Michael Somos, Jul 05 2006
Given g.f. A(x), then B(x) = x^3 * A(x^8) satisfies 0 = f(B(x), B(x^2), B(x^3), B(x^6)) where f(u1, u2, u3, u6) = u1^4*u6^2 + 3*u2^2*u3^4 - 4*u1*u2*u3*u6 * (u2^2 + 3*u6^2). - Michael Somos, Jul 05 2006
a(n) = A002325(8*n+3)/2. [Hirschhorn] - R. J. Mathar, Mar 23 2011
a(n) = A027414(8*n + 3). - Michael Somos, Nov 16 2011
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A082564. - Michael Somos, Jan 31 2015
From Peter Bala, Jan 07 2021: (Start)
G.f.: A(x) = Sum_{n = -oo..oo} x^n/(1 - x^(8*n + 3)). See Agarwal, p. 285, equation 6.19.
A(x^2) = Sum_{n = -oo..oo} x^(2*n)/(1 - x^(8*n + 3)). Cf. A121444. (End)
A(q^2) = (1/2)*Sum_{k >= 0} q^k/(1 + q^(4*k+3)) + (1/2)*Sum_{k >= 0} q^(3*k)/(1 + q^(4*k+1)) - set z = 1 and replace q with q^2 in Anguelova, equation 3.35. - Peter Bala, Mar 03 2021

Extensions

More terms from Vladeta Jovovic, Sep 14 2004

A129134 Expansion of (1 - phi(-q) * phi(-q^2)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, -2, -1, 0, 2, 0, -1, 3, 0, -2, -2, 0, 0, 0, -1, 2, 3, -2, 0, 0, 2, 0, -2, 1, 0, -4, 0, 0, 0, 0, -1, 4, 2, 0, -3, 0, 2, 0, 0, 2, 0, -2, -2, 0, 0, 0, -2, 1, 1, -4, 0, 0, 4, 0, 0, 4, 0, -2, 0, 0, 0, 0, -1, 0, 4, -2, -2, 0, 0, 0, -3, 2, 0, -2, -2, 0, 0, 0, 0, 5, 2, -2, 0, 0, 2, 0, -2, 2, 0, 0, 0, 0, 0, 0, -2, 2, 1, -6, -1, 0, 4, 0, 0, 0
Offset: 1

Views

Author

Michael Somos, Mar 30 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
For n nonzero, a(n) is nonzero if and only if n is in A002479.

Examples

			G.f. = q + q^2 - 2*q^3 - q^4 + 2*q^6 - q^8 + 3*q^9 - 2*q^11 - 2*q^12 - q^16 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, (-1)^Quotient[ n - 1, 2] DivisorSum[n, KroneckerSymbol[-2, #] &]]; (* Michael Somos, Jun 09 2015 *)
    a[ n_] := SeriesCoefficient[ (1 - EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^2]) / 2 , {q, 0, n}]; (* Michael Somos, Jun 09 2015 *)
    a[ n_] := SeriesCoefficient[ (1 - QPochhammer[ q]^2 QPochhammer[ q^2] / QPochhammer[ q^4]) / 2 , {q, 0, n}]; (* Michael Somos, Jun 09 2015 *)
  • PARI
    {a(n) = if( n<1, 0, (-1)^((n-1)\2) * sumdiv(n, d, kronecker( -2, d)))};
    
  • PARI
    {a(n) = local(A); if( n<1, 0, A = x * O(x^n); polcoeff( (1 - eta(x + A)^2 * eta(x^2 + A) / eta(x^4 + A)) / 2, n))};

Formula

Expansion of (1 - eta(q)^2 * eta(q^2) / eta(q^4)) / 2 in powers of q.
G.f.: (1 - Product_{k>0} (1 - x^k)^2 / (1 + x^(2*k)) )/2.
a(n) = A002325(n) * (-1)^floor((n-1)/2). A082564(n) = -2 * a(n) unless n=0.
a(3*n + 1) = A258747(n). a(3*n + 2) = A258764(n). - Michael Somos, Jun 09 2015

A139093 Expansion of phi(q) * phi(-q^2) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, -2, -4, 2, 0, -4, 0, 2, 6, 0, -4, 4, 0, 0, 0, 2, 4, -6, -4, 0, 0, -4, 0, 4, 2, 0, -8, 0, 0, 0, 0, 2, 8, -4, 0, 6, 0, -4, 0, 0, 4, 0, -4, 4, 0, 0, 0, 4, 2, -2, -8, 0, 0, -8, 0, 0, 8, 0, -4, 0, 0, 0, 0, 2, 0, -8, -4, 4, 0, 0, 0, 6, 4, 0, -4, 4, 0, 0, 0, 0, 10, -4, -4, 0, 0, -4, 0, 4, 4, 0, 0, 0, 0, 0, 0, 4, 4, -2, -12, 2, 0, -8, 0
Offset: 0

Views

Author

Michael Somos, Apr 08 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) is nonzero if and only if n is in A002479.

Examples

			G.f. = 1 + 2*q - 2*q^2 - 4*q^3 + 2*q^4 - 4*q^6 + 2*q^8 + 6*q^9 - 4*q^11 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(32), 1), 105); A[1] + 2*A[2] - 2*A[3] - 4*A[4] + 2*A[5] - 4*A[7] + 2*A[9] + 6*A[10] - 4*A[12] + 4*A[13] + 4*A[16]; /* Michael Somos, Aug 29 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 4, 0, q^2], {q, 0, n}]; (* Michael Somos, Aug 29 2014 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^2]^7 / (QPochhammer[ q]^2 QPochhammer[ q^4]^3), {q, 0, n}]; (* Michael Somos, Feb 18 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], 2 (-1)^Quotient[n, 2] Sum[ JacobiSymbol[ -2, d], {d, Divisors @ n}]]; (* Michael Somos, Feb 18 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, 2 * (-1)^(n\2) * sumdiv(n, d, kronecker( -2, d)))};
    
  • PARI
    {a(n) = my(A); if ( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^7 / (eta(x + A)^2 * eta(x^4 + A)^3), n))};
    

Formula

Expansion of eta(q^2)^7 / (eta(q)^2 * eta(q^4)^3) in powers of q.
Euler transform of period 4 sequence [ 2, -5, 2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 8^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A112603.
G.f.: Product_{k>0} (1 - x^(2*k))^2 * (1 + x^(2*k-1))^2 / (1 + x^(2*k)).
a(8*n + 5) = a(8*n + 7) = 0.
a(n) = (-1)^n * A082564(n). a(2*n) = A133692(n). a(2*n + 1) = 2 * A125095(n). a(4*n) = a(8*n) = A033715(n). a(8*n + 1) = 2 * A112603(n). a(8*n + 3) = -4 * A033761(n).

A258747 Expansion of chi(-x) * f(x^3) * f(-x^6) in powers of x where chi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, 0, 0, 0, -1, -2, 2, 1, 0, 0, 2, 0, 0, -2, 0, 1, 0, 0, 0, 0, -1, -2, 0, 2, -2, 0, 2, 0, -2, 0, 0, 2, -1, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, -2, 2, 1, -2, 0, 2, 0, 0, -4, 0, 2, -1, 0, 0, 0, 0, -2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2
Offset: 0

Views

Author

Michael Somos, Jun 09 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x - x^5 - 2*x^6 + 2*x^7 + x^8 + 2*x^11 - 2*x^14 + x^16 - x^21 + ...
G.f. = q - q^4 - q^16 - 2*q^19 + 2*q^22 + q^25 + 2*q^34 - 2*q^43 + q^49 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] QPochhammer[ -x^3] QPochhammer[ x^6], {x, 0, n}];
    a[ n_] := If[ n < 0, 0, (-1)^Quotient[ 3 n, 2] DivisorSum[ 3 n + 1, KroneckerSymbol[-2, #] &]];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A)^4 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A)), n))};
    
  • PARI
    {a(n) = if( n<0, 0, (-1)^(3*n\2) * sumdiv(3*n + 1, d, kronecker( -2, d)))};

Formula

Expansion of q^(-1/3) * eta(q) * eta(q^6)^4 / (eta(q^2) * eta(q^3) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ -1, 0, 0, 0, -1, -3, -1, 0, 0, 0, -1, -2, ...].
G.f.: Product_{k>0} (1 + x^(3*k)) * (1 - x^(6*k))^2 / ( (1 + x^k) * (1 + x^(6*k)) ).
-2 * a(n) = A082564(3*n + 1). a(n) = A129134(3*n + 1).
a(4*n + 3) = 2 * A257402(n-1). a(8*n) = A257398(n). a(8*n + 2) = a(8*n + 4) = a(16*n + 3) = a(16*n + 15) = 0. a(16*n + 7) = 2 * A255318(n). a(16*n + 11) = 2 * A255319(n).

A258764 Expansion of chi(-x^2) * psi(-x^3)^2 in powers of x where psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 0, -1, -2, 0, 2, 0, 0, 0, 0, -1, 0, 2, 2, -2, 0, 1, 0, 0, -2, 0, 0, -2, 0, 0, 0, 0, -2, 2, 2, 0, 0, 1, 0, 0, -2, 0, 2, 0, 0, 0, 0, -1, -2, 2, 2, 0, 0, 2, 0, -2, 0, 0, 0, -2, 0, 0, 0, -2, -2, 0, 0, 0, 0, 2, 0, -1, 0, 0, 4, 0, 0, 0, 0, 0, -2, 0, 2, -2, 0, 3
Offset: 0

Views

Author

Michael Somos, Jun 09 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x^2 - 2*x^3 + 2*x^5 - x^10 + 2*x^12 + 2*x^13 - 2*x^14 + x^16 + ...
G.f. = q^2 - q^8 - 2*q^11 + 2*q^17 - q^32 + 2*q^38 + 2*q^41 - 2*q^44 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2, x^4] QPochhammer[ x^3]^2 / QPochhammer[ x^6, x^12]^2, {x, 0, n}];
    a[ n_] := If[ n < 0, 0, (-1)^Quotient[ n, 2] DivisorSum[ 3 n + 2, KroneckerSymbol[-2, #] &]];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^12 + A)^2 / (eta(x^4 + A) * eta(x^6 + A)^2), n))};
    
  • PARI
    {a(n) = if( n<0, 0, (-1)^(n\2) * sumdiv(3*n + 2, d, kronecker( -2, d)))};

Formula

Expansion of q^(-2/3) * eta(q^2) * eta(q^3)^2 * eta(q^12)^2 / (eta(q^4) * eta(q^6)^2) in powers of q.
Euler transform of period 12 sequence [ 0, -1, -2, 0, 0, -1, 0, 0, -2, -1, 0, -2, ...].
G.f.: Product_{k>0} (1 + x^(2*k)) * (1 - x^(3*k))^2 * (1 - x^(2*k) + x^(4*k))^2.
a(n) = A129134(3*n + 2). -2 * a(n) = A082564(3*n + 2).
a(4*n) = A257399(n). a(8*n + 3) = -2 * A255318(n). a(8*n + 5) = 2 * A255319(n). a(8*n + 6) = -2 * A257402(n-1). a(16*n) = A257398(n). a(16*n + 2) = - A257399(n). a(16*n + 12) = 2 * A255317(n).
a(8*n + 1) = a(8*n + 7) = a(16*n + 4) = a(16*n + 8) = 0.
Showing 1-6 of 6 results.