A082579 Expansion of e.g.f.: exp( x/(1-x)^2 ).
1, 1, 5, 31, 241, 2261, 24781, 309835, 4342241, 67308841, 1141960501, 21026890391, 417264626065, 8871853115581, 201100863674621, 4838817223845571, 123128720142540481, 3302478863343928145, 93091427773284348901, 2750635764338982054031, 84994418675445218025521
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..433
- Peter Bala, Integer sequences that become periodic on reduction modulo k for all k
Programs
-
Magma
A082579:= func< n | n eq 0 select 1 else (&+[Factorial(n)*Binomial(n+k-1, n-k)/Factorial(k): k in [1..n]]) >; [A082579(n): n in [0..25]]; // G. C. Greubel, Feb 23 2021
-
Mathematica
nn=20;Range[0,nn]!CoefficientList[Series[Exp[ x/(1-x)^2],{x,0,nn}],x] (* Geoffrey Critzer, Nov 04 2012 *) nn = 20; Range[0, nn]! * CoefficientList[Series[Product[Exp[k*x^k], {k, 1, nn}], {x, 0, nn}], x] (* Vaclav Kotesovec, Mar 21 2016 *) Table[If[n==0, 1, n*n!*HypergeometricPFQ[{1-n, n+1}, {3/2, 2}, -1/4]], {n, 0, 25}] (* G. C. Greubel, Feb 23 2021 *)
-
Maxima
a(n):=n!*sum(binomial(n+k-1,2*k-1)/k!,k,1,n); /* Vladimir Kruchinin, Apr 21 2011 */
-
PARI
my(x='x+O('x^33)); Vec(serlaplace(exp( x/(1-x)^2 ))) /* Joerg Arndt, Sep 14 2012 */
-
Sage
[1 if n==0 else factorial(n)*sum( binomial(n+k-1, n-k)/factorial(k) for k in (1..n)) for n in (0..25)] # G. C. Greubel, Feb 23 2021
Formula
a(n) = n!*Sum_{k=0..n} binomial(n+k-1, 2*k-1)/k!.
Recurrence: a(n+3) - (3*n+7)*a(n+2) + (n+2)*(3*n+2)*a(n+1) - (n+2)*(n+1)*n*a(n) = 0.
E.g.f.: exp( x/( 1 - x )^2 ).
Special values of the hypergeometric function 2F2: a(n)=n!*n*hypergeom([n+1, -n+1], [3/2, 2], -1/4), n >= 1. - Karol A. Penson, Jan 29 2004
a(n) ~ 2^(1/6)*n^(n-1/6)*exp(-1/12 + 3*(n/2)^(2/3) - n)/sqrt(3). - Vaclav Kotesovec, Jun 26 2013
E.g.f.: E(0)/2, where E(k) = 1 + 1/( 1 - x/(x + (1-x)^2*(k+1)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
E.g.f.: exp(Sum_{k>=1} k*x^k). - Vaclav Kotesovec, Mar 07 2015
a(n) = n!*y(n), with y(0) = 1, y(n) = (Sum_{k=0..n-1} (n-k)^2*y(k))/n. - Benedict W. J. Irwin, Jun 02 2016
E.g.f.: Product_{k>=1} 1/(1 - x^k)^(J_2(k)/k), where J_2() is the Jordan function (A007434). - Ilya Gutkovskiy, May 25 2019
a(n) = n*n!*Hypergeometric2F2([1-n, n+1], [3/2, 2], -1/4) with a(0) = 1. - G. C. Greubel, Feb 23 2021
Comments