cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082759 a(n) = Sum_{k = 0..n} binomial(n,k)*trinomial(n,k), where trinomial(n,k) = trinomial coefficients.

Original entry on oeis.org

1, 2, 8, 35, 160, 752, 3599, 17446, 85376, 420884, 2087008, 10398016, 52010479, 261021854, 1313707256, 6628095035, 33512880640, 169768235840, 861450392708, 4377796514152, 22277498220160, 113502759811000, 578931209245760, 2955873376166144, 15105883318474991
Offset: 0

Views

Author

Emanuele Munarini, May 21 2003

Keywords

Comments

Central coefficients of A115990. - Paul Barry, Feb 25 2011

Examples

			G.f. = 1 + 2*x + 8*x^2 + 35*x^3 + 160*x^4 + 752*x^5 + 3599*x^6 + 17446*x^7 + ...
		

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([-n, -n, n + 1], [1/2, 1], 1/4):
    seq(simplify(a(n)), n = 0..24);  # Peter Luschny, Jan 04 2025
  • Mathematica
    Table[Sum[Binomial[2 n - k, k] Binomial[n, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 24 2012; typo fixed by Vincenzo Librandi, May 07 2013 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n+k,n-k)*binomial(n,k))

Formula

a(n) = Sum_{k = 0..n} C(n+k, n-k)*C(n, k). - Benoit Cloitre, Jun 20 2003
2*n*(2*n - 1)*(38*n - 53)*a(n) + ( - 760*n^3 + 1820*n^2 - 1252*n + 252)*a(n - 1) - 8*(n - 1)*(19*n^2 - 36*n + 9)*a(n - 2) - 3*(38*n - 15)*(n - 1)*(n - 2)*a(n - 3) = 0. - Vladeta Jovovic, Jul 15 2004
a(n) = Sum_{k = 0..n} C(2*n - k, k)*C(n, k). - Paul Barry, Jan 20 2005
a(n) ~ c * d^n / sqrt(Pi*n), where d = 5.21913624874158651... = (((1261 + 57*sqrt(57))^(2/3) + 112 + 10*(1261 + 57*sqrt(57))^(1/3))/(6*(1261 + 57*sqrt(57))^(1/3))) is the real root of the equation 4*d^3 - 20*d^2 - 4*d - 3 = 0 and c = 0.79036380822702870439029... = 1/114*sqrt(57)*sqrt((9747 + 57*sqrt(57))^(1/3)*(2*(9747 + 57*sqrt(57))^(2/3) + 912 + 57*(9747 + 57*sqrt(57))^(1/3)))/((9747 + 57*sqrt(57))^(1/3)) is the positive real root of the equation 1216*c^6 - 912*c^4 + 100*c^2 - 3 = 0. - Vaclav Kotesovec, Oct 24 2012 (updated Oct 16 2016, following a suggestion of Michael Somos)
G.f.: A(x) = x*B'(x)/B(x), where B(x) satisfies B(x) = x*(1 + 2*B(x) + 2*B(x)^2 + B(x)^3). - Vladimir Kruchinin, Jan 14 2015
a(n) = Sum_{k = 0..n} (-1)^k*C(n, k)*C(3*n - 2*k, n - k). - Peter Bala, Jul 13 2016
G.f. y = A(x) satisfies 0 = 1 + y*(3-2*x) + y^3*(-4+20*x+4*x^2+3*x^3). - Michael Somos, Oct 15 2016
From Peter Bala, Jan 09 2022: (Start)
a(n) = [x^n] (1 + 2*x + 2*x^2 + x^3)^n.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. (End)
a(n) = hypergeom([-n, -n, n + 1], [1/2, 1], 1/4). - Peter Luschny, Jan 04 2025