cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A083298 Duplicate of A083222.

Original entry on oeis.org

1, 3, 25, 75, 625, 1875, 15625, 46875, 390625, 1171875, 9765625, 29296875
Offset: 0

Views

Author

Keywords

A083223 a(n) = (5*6^n+(-6)^n)/6.

Original entry on oeis.org

1, 4, 36, 144, 1296, 5184, 46656, 186624, 1679616, 6718464, 60466176, 241864704, 2176782336, 8707129344, 78364164096, 313456656384, 2821109907456, 11284439629824, 101559956668416, 406239826673664, 3656158440062976
Offset: 0

Views

Author

Paul Barry, Apr 23 2003

Keywords

Crossrefs

Programs

  • Magma
    [(5*6^n+(-6)^n)/6: n in [0..25]]; // Vincenzo Librandi, Jun 29 2011
  • Mathematica
    CoefficientList[Series[(1+4x)/((1+6x)(1-6x)),{x,0,50}],x]  (* Harvey P. Dale, Mar 01 2011 *)

Formula

a(n) = (5*6^n+(-6)^n)/6.
G.f.: (1+4*x)/((1+6*x)*(1-6*x)).
E.g.f.: (5*exp(6*x)+exp(-6*x))/6.
a(n) = 36*a(n-2). - Wesley Ivan Hurt, Jun 24 2021

A083297 a(n) = (4*4^n + (-6)^n)/5.

Original entry on oeis.org

1, 2, 20, 8, 464, -736, 12608, -42880, 388352, -1805824, 12932096, -69203968, 448778240, -2558451712, 15887581184, -93178003456, 567657955328, -3371587993600, 20366966915072, -121652045676544, 732111297314816, -4383871690866688, 26338414517288960
Offset: 0

Views

Author

Paul Barry, Apr 24 2003

Keywords

Comments

Binomial transform of A083296.

Crossrefs

Cf. A083222.

Programs

  • GAP
    List([0..25],n->(4*4^n+(-6)^n)/5); # Muniru A Asiru, Oct 31 2018
  • Magma
    [(4*4^n+(-6)^n)/5: n in [0..30]]; // Vincenzo Librandi, Jun 08 2011
    
  • Maple
    seq(coeff(series((1+4*x)/((1-4*x)*(1+6*x)),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Oct 31 2018
  • Mathematica
    CoefficientList[Series[(1 + 4 x)/((1 - 4 x) (1 + 6 x)), {x, 0, 22}], x] (* Michael De Vlieger, Oct 31 2018 *)
    CoefficientList[Series[(4*Exp[4*x] + Exp[-6*x])/5, {x, 0, 50}], x]*Table[k!, {k, 0, 50}] (* Stefano Spezia, Nov 01 2018 *)
    LinearRecurrence[{-2,24}, {1,2}, 30] (* G. C. Greubel, Nov 07 2018 *)
  • PARI
    first(n) = Vec((1+4*x)/((1-4*x)*(1+6*x)) + O(x^n)) \\ Iain Fox, Oct 31 2018
    
  • PARI
    a(n) = (4*4^n + (-6)^n)/5 \\ Iain Fox, Oct 31 2018
    

Formula

a(n) = (4*4^n + (-6)^n)/5.
G.f.: (1+4*x)/((1-4*x)*(1+6*x)).
E.g.f.: (4*exp(4*x) + exp(-6*x))/5.
a(n) = -2*a(n-1) + 24*a(n-2). - Iain Fox, Oct 31 2018

A083299 a(n) = (4*6^n + (-4)^n)/5.

Original entry on oeis.org

1, 4, 32, 160, 1088, 6016, 38144, 220672, 1356800, 8009728, 48582656, 289398784, 1744781312, 10435133440, 62745018368, 375933239296, 2257746919424, 13537891581952, 81261709230080, 487432816427008, 2925146654375936
Offset: 0

Views

Author

Paul Barry, Apr 24 2003

Keywords

Comments

Binomial transform of A083222.

Crossrefs

Cf. A083300.

Programs

Formula

a(n) = (4*6^n + (-4)^n)/5.
G.f.: (1+2*x)/((1-6*x)*(1+4*x)).
E.g.f.: (4*exp(6*x) + exp(-4*x))/5.
Showing 1-4 of 4 results.