A083416 Add 1, double, add 1, double, etc.
1, 2, 4, 5, 10, 11, 22, 23, 46, 47, 94, 95, 190, 191, 382, 383, 766, 767, 1534, 1535, 3070, 3071, 6142, 6143, 12286, 12287, 24574, 24575, 49150, 49151, 98302, 98303, 196606, 196607, 393214, 393215, 786430, 786431, 1572862, 1572863, 3145726, 3145727, 6291454
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-2).
Programs
-
Haskell
a083416 n = a083416_list !! (n-1) a083416_list = 1 : f 2 1 where f x y = z : f (x+1) z where z = (1 + x `mod` 2) * y + 1 - x `mod` 2 -- Reinhard Zumkeller, Feb 27 2012
-
Magma
[Floor(3*2^((2*n-(-1)^n-3)/4)+((-1)^n-3)/2): n in [1..50]]; // Vincenzo Librandi, Aug 17 2011
-
Maple
A083416 := proc(n) if type(n,'even') then 3*2^(n/2-1)-1 ; else 3*2^((n-1)/2)-2 ; end if; end proc: # R. J. Mathar, Feb 16 2011
-
Mathematica
a=0; b=0; lst={a,b}; Do[z=a+b+1; AppendTo[lst,z]; a=b; b=z; z=b+1; AppendTo[lst,z]; a=b; b=z,{n,50}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 16 2010 *) LinearRecurrence[{0,3,0,-2},{1,2,4,5},40] (* Harvey P. Dale, Nov 18 2014 *)
Formula
G.f.: x*(1+2*x+x^2-x^3)/(1-x^2)/(1-2*x^2).
a(2*n) = 3*2^(n-1)-1, a(2*n+1) = 3*2^n-2.
a(n) = A081026(n+1)-1.
a(n) = 3*2^((2*n-(-1)^n-3)/4)+((-1)^n-3)/2. - Bruno Berselli, Feb 17 2011
For n > 1: a(n) = (1 + n mod 2) * a(n-1) + 1 - n mod 2. - Reinhard Zumkeller, Feb 27 2012
E.g.f.: (3*cosh(sqrt(2)*x) - 4*sinh(x) + 3*sqrt(2)*sinh(sqrt(2)*x) - 2*cosh(x) - 1)/2. - Stefano Spezia, Jul 11 2023
Extensions
More terms from Donald Sampson (marsquo(AT)hotmail.com), Dec 04 2003
Corrected by T. D. Noe, Nov 02 2006