A083667 Number of antisymmetric binary relations on a set of n labeled points.
1, 2, 12, 216, 11664, 1889568, 918330048, 1338925209984, 5856458868470016, 76848453272063549952, 3025216211508053707410432, 357271984146678126737757198336, 126579320351263180234426948827254784
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..50
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8.
- Jeffrey R. Goodwin, The 3x+1 Problem and Integer Representations, arXiv:1504.03040 [math.NT], 2015.
- G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- G. Wirsching, On the combinatorial structure of 3N+1 predecessor sets, Discrete Mathematics, Vol. 148 (1996), 265-286.
Crossrefs
Cf. A083670.
Programs
-
GAP
a := n -> 2^n * 3^Binomial(n, 2);
-
Maple
A083667:=n->2^n*3^((n^2-n)/2); seq(A083667(n), n=0..15); # Wesley Ivan Hurt, Nov 30 2013
-
Mathematica
Table[2^n*3^((n^2-n)/2), {n, 0, 15}] (* Wesley Ivan Hurt, Nov 30 2013 *)
-
PARI
a(n)=2^n*3^((n^2-n)/2)
Formula
a(n) = 3*a(n-1)^2/a(n-2). - Michael Somos, Sep 16 2005
a(n) = 2^n * 3^((n*(n-1))/2).
2*Sum_{n>=2} 1/a(n) = 2*Sum_{n>=2} 2^(-n)*3^(-((n*(n-1))/2)) = Sum_{n>=1} 1/Product_{k=1..n} A008776(k) = Sum_{n>=1} 1/Product_{k=1..n} 2*3^k = 0.1760984543123346169209966002213.... - Alexander R. Povolotsky, Aug 08 2011
Extensions
Name simplified by Franklin T. Adams-Watters, Aug 07 2011
Comments