A008776
Pisot sequences E(2,6), L(2,6), P(2,6), T(2,6).
Original entry on oeis.org
2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 118098, 354294, 1062882, 3188646, 9565938, 28697814, 86093442, 258280326, 774840978, 2324522934, 6973568802, 20920706406, 62762119218, 188286357654, 564859072962, 1694577218886, 5083731656658, 15251194969974
Offset: 0
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 203).
- Franklin T. Adams-Watters, Table of n, a(n) for n = 0..200
- Shaoshi Chen, Hanqian Fang, Sergey Kitaev, and Candice X.T. Zhang, Patterns in Multi-dimensional Permutations, arXiv:2411.02897 [math.CO], 2024. See pp. 2, 26.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 170
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Tanya Khovanova, Recursive Sequences
- Craig Knecht, Sphinx tiling of a repetitive shape.
- C. Moore, Some Polyomino Tilings of the Plane, arXiv:math/9905012 [math.CO], 1999.
- C. Pisot, La répartition modulo 1 et les nombres algébriques, Ann. Scu. Norm. Sup. Pisa 2 ser, vol 7. no 3-4 (1938) p 205-248.
- Index entries for linear recurrences with constant coefficients, signature (3).
Apart from initial term, same as
A025192.
-
List([0..30], n-> 2*3^n); # G. C. Greubel, Sep 11 2019
-
a008776 = (* 2) . (3 ^)
a008776_list = iterate (* 3) 2 -- Reinhard Zumkeller, Oct 19 2015
-
[2*3^n: n in [0..30]]; // G. C. Greubel, Sep 11 2019
-
# E(x,y) is f(n,x,y,1/2), T(x,y) is f(n,x,y,0), and S(x,y) is f(n,x,y,1).
f:=proc(n,x,y,r) option remember;
if n=0 then x
elif n=1 then y
else floor(f(n-1,x,y,r)^2/f(n-2,x,y,r) + r); fi; end;
[seq(f(n,2,6,1/2),n=0..30)];
# N. J. A. Sloane, Jul 30 2016
-
Table[EulerPhi[3^n], {n, 0, 100}] (* Artur Jasinski, Nov 19 2008 *)
Table[MatrixPower[{{1,2},{1,2}},n][[1]][[2]],{n,0,44}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
NestList[3#&,2,50] (* Harvey P. Dale, Nov 28 2022 *)
-
a(n)=3^n<<1 \\ corrected by Michel Marcus, Aug 03 2015
-
def A008776(n): return 3**n<<1 # Chai Wah Wu, Apr 02 2025
-
[2*3^n for n in (0..30)] # G. C. Greubel, Sep 11 2019
A054872
Number of (12345, 13245, 21345, 23145, 31245, 32145)-avoiding permutations.
Original entry on oeis.org
1, 1, 2, 6, 24, 114, 600, 3372, 19824, 120426, 749976, 4762644, 30723792, 200778612, 1326360048, 8842981848, 59425117152, 402092408346, 2737156004376, 18732169337604, 128806616999184, 889479590046108, 6165939982059600, 42891532191557736, 299307319060137504
Offset: 0
Elisa Pergola (elisa(AT)dsi.unifi.it), May 26 2000
G.f. = 1 + x + 2*x^2 + 6*x^3 + 24*x^4 + 114*x^5 + 600*x^6 + 3372*x^7 + 19824*x^8 + ...
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n=1..200 from Vincenzo Librandi)
- Michael H. Albert, Christian Bean, Anders Claesson, Émile Nadeau, Jay Pantone, and Henning Ulfarsson, PermPAL database.
- Elena Barcucci, Alberto Del Lungo, Elisa Pergola, and Renzo Pinzani, Permutations avoiding an increasing number of length-increasing forbidden subsequences, Discrete Mathematics and Theoretical Computer Science 4, 2000, 31-44.
- Christian Bean, Émile Nadeau, Jay Pantone, and Henning Ulfarsson, Permutations avoiding bipartite partially ordered patterns have a regular insertion encoding, The Electronic Journal of Combinatorics, Volume 31, Issue 3 (2024); arXiv preprint, arXiv:2312.07716 [math.CO], 2023.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
- Eric Weisstein's World of Mathematics, Legendre Polynomial.
-
Set j=3 in the following: f := (x,j)->1-(j+1)*x- sqrt(1-2*(j+1)*x+(j-1)^2*x^2); t := (x,j)->sum(k!*x^k, k=1..(j-1)); s := (x,j)->x^(j-2)*(j-1)!*(f(x,j))/(2)+ t(x,j);
-
Table[SeriesCoefficient[x*(2-2*x-(1-8*x+4*x^2)^(1/2)),{x,0,n}],{n,1,20}] (* Vaclav Kotesovec, Oct 11 2012 *)
Table[2^(n-1) (LegendreP[n-1, 2] - LegendreP[n-3, 2])/(2n-3), {n, 1, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
-
x='x+O('x^50); Vec(x*(2-2*x-(1-8*x+4*x^2)^(1/2))) \\ Altug Alkan, Nov 02 2015
A110520
Expansion of 1/(1-2*x*c(3*x)), c(x) the g.f. of A000108.
Original entry on oeis.org
1, 2, 10, 68, 538, 4652, 42628, 406856, 4001914, 40285724, 413049580, 4298523704, 45288486436, 482122686008, 5178044596168, 56038403289488, 610508962548538, 6690154684006268, 73693477140179548, 815508203755227608
Offset: 0
-
Flatten[{1,Table[Sum[Sum[j*Binomial[2n-j-1,n-j]*Binomial[j,k]*3^(n-j)/n,{j,0,n}],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Oct 18 2012 *)
A083670
Number of different antisymmetric relations on n unlabeled points.
Original entry on oeis.org
1, 2, 7, 44, 558, 16926, 1319358, 269695440, 146202099255, 212360894456310, 834625722216941739, 8954592469138636320960, 264305834899495393164591240, 21607243912704793462806305720502, 4921054357098031770205099867497197328
Offset: 0
Goetz Pfeiffer (Goetz.Pfeiffer(AT)nuigalway.ie), May 02 2003
Cf.
A083667 (labeled antisymmetric relations).
-
f := function(n) local s, m, c, t, x, a, j; s := 0; m := [1..n]; c := Combinations(m,2); t := Tuples(m,2); for x in ConjugacyClasses(SymmetricGroup(n)) do a := Representative(x); j := Length(Cycles(a,m)); s := s+Size(x)*2^j*3^(Length(Cycles(a,t,OnPairs))-Length(Cycles(a,c,OnSets))-j); od; return s/Factorial(n); end;
-
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i - 1}], {i, 2, Length[v]}] + Sum[Quotient[v[[i]] - 1, 2], {i, 1, Length[v]}];
a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p]*2^Length[p], {p, IntegerPartitions[n]}]; s/n!];
a /@ Range[0, 14] (* Jean-François Alcover, Jan 07 2021, after Andrew Howroyd *)
-
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, (v[i]-1)\2)}
a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)*2^#p); s/n!} \\ Andrew Howroyd, Oct 24 2019
A127946
Hankel transform of central coefficients of (1+k*x-3x^2)^n, k arbitrary integer.
Original entry on oeis.org
1, -6, -108, 5832, 944784, -459165024, -669462604992, 2928229434235008, 38424226636031774976, -1512608105754026853705216, -178635992073339063368878599168, 63289660175631590117213474413627392, 67269440586795655766964092111705109663744
Offset: 0
-
[2^n*(-3)^Binomial(n+1,2): n in [0..30]]; // G. C. Greubel, May 03 2018
-
A127946[0] = 1; A127946[n_] := {1, -1, -1, 1}[[Mod[n, 4] + 1]] * 2^n * 3^(n(n + 1)/2); Table[A127946[n], {n, 0, 12}] (* Jean-François Alcover, Oct 04 2016 *)
Table[2^n*(-3)^Binomial[n+1,2], {n,0,30}] (* G. C. Greubel, May 03 2018 *)
-
a(n)=if((n-1)%4<2,-1,1)*2^n*3^(n*(n+1)/2) \\ Charles R Greathouse IV, Oct 04 2016
A141342
A transform of the Fibonacci numbers.
Original entry on oeis.org
1, 1, -1, 3, -13, 65, -353, 2025, -12077, 74143, -465481, 2974863, -19289821, 126594191, -839273105, 5612483619, -37814455781, 256447068841, -1749182184793, 11991887667273, -82588248514885, 571118483653841
Offset: 0
-
CoefficientList[Series[1/(1-2*x-2*x^2+x*Sqrt[1+8*x+4*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
-
x='x+O('x^50); Vec(1/(1-2*x-2*x^2+x*sqrt(1+8*x+4*x^2))) \\ G. C. Greubel, Mar 21 2017
A341471
Number of antisymmetric, antitransitive relations on n labeled nodes.
Original entry on oeis.org
1, 1, 3, 21, 317, 9735, 583907, 66226033, 13837055261
Offset: 0
There are a(3) = 21 antisymmetric, antitransitive relations on n = 3 letters:
- the empty relation,
- all six relations containing only a single pair (x,y) (with x != y),
- all twelve relations {(x1,y1), (x2,y2)} containing exactly two ordered pairs, neither of which is (y1,x1) or (y2,x2), and
- two relations containing three ordered pairs: {(1,2), (2,3), (3,1)} and {(1,3), (3,2), (2,1)}.
A341473
The number of antitransitive relations on n labeled nodes.
Original entry on oeis.org
1, 1, 4, 39, 921, 47462, 5205915, 1161039833, 516101770210
Offset: 0
Showing 1-8 of 8 results.
Comments