cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A008776 Pisot sequences E(2,6), L(2,6), P(2,6), T(2,6).

Original entry on oeis.org

2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 118098, 354294, 1062882, 3188646, 9565938, 28697814, 86093442, 258280326, 774840978, 2324522934, 6973568802, 20920706406, 62762119218, 188286357654, 564859072962, 1694577218886, 5083731656658, 15251194969974
Offset: 0

Views

Author

Keywords

Comments

Definitions of Pisot and related sequences:
Pisot sequence E(x, y): a(0) = x, a(1) = y, a(n) = floor(a(n-1)^2/a(n-2) + 1/2) = nearest integer to a(n-1)^2/a(n-2), with 0 < x < y.
Pisot sequence L(x, y): a(0) = x, a(1) = y, a(n) = ceiling(a(n-1)^2/a(n-2)).
Pisot sequence P(x, y): a(0) = x, a(1) = y, a(n) = ceiling(a(n-1)^2/a(n-2) - 1/2).
Pisot sequence T(x, y): a(0) = x, a(1) = y, a(n) = floor(a(n-1)^2/a(n-2)).
Pisot/Shallit sequence S(x, y): a(0) = x, a(1) = y, a(n) = floor(a(n-1)^2/a(n-2)+1).
A025192 is the main entry for the sequence of numbers 2*3^n.
Number of tilings of a 4 X (4n+4) rectangle into T tetrominoes.
Numbers n such that 3^n = n/2 mod n. Cf. A066601 3^n mod n. - Zak Seidov, Aug 26 2006, Nov 20 2008
For n >= 1, a(n) is equal to the number of functions f:{1,2...,n}->{1,2,3} such that for a fixed x in {1,2,...,n} and a fixed y in {1,2,3} we have f(x) != y. - Aleksandar M. Janjic and Milan Janjic, Mar 27 2007
a(n+1) is the number of compositions of n when there are 2 types of each natural number. - Milan Janjic, Aug 13 2010
2*Sum_{n>=2} 1/A083667(n) = 2*Sum_{n>=2} 2^(-n)*3^(-((n*(n-1))/2)) = Sum_{n>=1} 1/Product_{k=1..n} A008776(k) = Sum_{n>=1} 1/Product_{k=1..n} 2*3^k = 0.17609845431233461692099660022134... . - Alexander R. Povolotsky, Aug 08 2011
Number of monic squarefree polynomials over F_3 of degree n+1. - Charles R Greathouse IV, Feb 07 2012
a(n) is the sum of the elements of the n-th power of the matrix {{1, 2}, {2, 1}}. - Griffin N. Macris, Mar 25 2016
Let D(m) denote the set of divisors of a number m, and consider s1(m) and s2(m) the sums of those divisors that are congruent to 1 and 2 (mod 3) respectively. This sequence lists the numbers m such that s1(m) = 1 and s2(m) = 2. - Michel Lagneau, Feb 09 2017
a(n) is the multiplicative order of k modulo 3^(n+1), where k is any number congruent to 2 or 5 modulo 9. Note that for n > 0, k is a primitive root modulo 3^(n+1) if and only if k == 2, 5 (mod 9). - Jianing Song, Apr 20 2021

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 203).

Crossrefs

Apart from initial term, same as A025192.
Cf. A080643.
Cf. A000244.

Programs

  • GAP
    List([0..30], n-> 2*3^n); # G. C. Greubel, Sep 11 2019
    
  • Haskell
    a008776 = (* 2) . (3 ^)
    a008776_list = iterate (* 3) 2  -- Reinhard Zumkeller, Oct 19 2015
    
  • Magma
    [2*3^n: n in [0..30]]; // G. C. Greubel, Sep 11 2019
    
  • Maple
    # E(x,y) is f(n,x,y,1/2), T(x,y) is f(n,x,y,0), and S(x,y) is f(n,x,y,1).
    f:=proc(n,x,y,r) option remember;
    if n=0 then x
    elif n=1 then y
    else floor(f(n-1,x,y,r)^2/f(n-2,x,y,r) + r); fi; end;
    [seq(f(n,2,6,1/2),n=0..30)];
    # N. J. A. Sloane, Jul 30 2016
  • Mathematica
    Table[EulerPhi[3^n], {n, 0, 100}] (* Artur Jasinski, Nov 19 2008 *)
    Table[MatrixPower[{{1,2},{1,2}},n][[1]][[2]],{n,0,44}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
    NestList[3#&,2,50] (* Harvey P. Dale, Nov 28 2022 *)
  • PARI
    a(n)=3^n<<1 \\ corrected by Michel Marcus, Aug 03 2015
    
  • Python
    def A008776(n): return 3**n<<1 # Chai Wah Wu, Apr 02 2025
  • Sage
    [2*3^n for n in (0..30)] # G. C. Greubel, Sep 11 2019
    

Formula

a(n) = 2*3^n.
a(n) = 3*a(n-1).
G.f.: 2/(1-3*x). - Philippe Deléham, Oct 08 2007
a(n-1) = phi(3^n). - Artur Jasinski, Nov 19 2008
E.g.f.: 2*exp(3*x). - Mohammad K. Azarian, Jan 15 2009
From Paul Curtz, Jan 20 2009: (Start)
a(n) = A048473(n) + 1.
a(n) = A052919(n+1)-1.
a(n) = A115099(n) - 2.
a(n) = A100774(n) + 2. (End)
If p[i]=2, (i >= 1), and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i <= j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n >= 1, a(n-1)=det A. - Milan Janjic, Apr 29 2010
G.f.: ((1/2)/G(0)-1)/x^2 where G(k) = 1 - 2^k/(2 - 4*x/(2*x - 2^k/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 22 2012
G.f.: -G(0)/x where G(k) = 1 - 1/(1-2*x)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 25 2013
G.f.: (1 - 1/Q(0))/x where Q(k) = 1 - x*(2*k-2)/(1 - x*(2*k+5)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 19 2013
G.f.: W(0), where W(k) = 1 + 1/(1 - x*(2*k+3)/(x*(2*k+4) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013

Extensions

Jasinski formula corrected by Charles R Greathouse IV, Feb 18 2011

A054872 Number of (12345, 13245, 21345, 23145, 31245, 32145)-avoiding permutations.

Original entry on oeis.org

1, 1, 2, 6, 24, 114, 600, 3372, 19824, 120426, 749976, 4762644, 30723792, 200778612, 1326360048, 8842981848, 59425117152, 402092408346, 2737156004376, 18732169337604, 128806616999184, 889479590046108, 6165939982059600, 42891532191557736, 299307319060137504
Offset: 0

Views

Author

Elisa Pergola (elisa(AT)dsi.unifi.it), May 26 2000

Keywords

Comments

Hankel transform is A083667, the number of different antisymmetric relations on n labeled points. - Paul Barry, Jun 26 2008
Conjectured to be the number of permutations of length n+1 avoiding the partially ordered pattern (POP) {5>1, 1>2, 1>3, 1>4} of length 5. That is, conjectured to be the number of length n+1 permutations having no subsequences of length 5 in which the fifth element is the largest and the first element is the next largest - Sergey Kitaev, Dec 13 2020
This conjecture has been proven. There are six sets of permutations avoiding six size five permutations including the two sets discussed in this sequence that are known to match this sequence. A further two are conjectured to match this sequence. - Christian Bean, Jul 23 2024

Examples

			G.f. = 1 + x + 2*x^2 + 6*x^3 + 24*x^4 + 114*x^5 + 600*x^6 + 3372*x^7 + 19824*x^8 + ...
		

Crossrefs

Programs

  • Maple
    Set j=3 in the following: f := (x,j)->1-(j+1)*x- sqrt(1-2*(j+1)*x+(j-1)^2*x^2); t := (x,j)->sum(k!*x^k, k=1..(j-1)); s := (x,j)->x^(j-2)*(j-1)!*(f(x,j))/(2)+ t(x,j);
  • Mathematica
    Table[SeriesCoefficient[x*(2-2*x-(1-8*x+4*x^2)^(1/2)),{x,0,n}],{n,1,20}] (* Vaclav Kotesovec, Oct 11 2012 *)
    Table[2^(n-1) (LegendreP[n-1, 2] - LegendreP[n-3, 2])/(2n-3), {n, 1, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
  • PARI
    x='x+O('x^50); Vec(x*(2-2*x-(1-8*x+4*x^2)^(1/2))) \\ Altug Alkan, Nov 02 2015

Formula

G.f.: 1 + x*(2 - 2*x - (1 - 8*x + 4*x^2)^(1/2)). - corrected by Vaclav Kotesovec, Oct 11 2012
a(n) = 2*A047891(n-1), n>=2. - Philippe Deléham, Aug 17 2007
Recurrence: (n-1)*a(n) = 4*(2*n-5)*a(n-1) - 4*(n-4)*a(n-2). - Vaclav Kotesovec, Oct 11 2012
a(n) ~ sqrt(26*sqrt(3)-45)*(4+2*sqrt(3))^n/(sqrt(8*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 11 2012
From Vladimir Reshetnikov, Nov 01 2015: (Start)
a(n) = 2^(n-1)*(LegendreP_{n-1}(2) - LegendreP_{n-3}(2))/(2*n-3).
For n > 2, a(n) = 6*hypergeom([2-n,3-n], [2], 3).
(End)
G.f. satisfies: A(x) = x * Sum_{n>=0} ( A(x)/x + 4*x + x/A(x) )^n / (2*4^n). - Paul D. Hanna, Mar 24 2016
G.f. satisfies: A(x) = x * Sum_{n>=0} ( A(x)/x + 4*x - x/A(x) )^n / 4^n. - Paul D. Hanna, Mar 24 2016

Extensions

a(0)=1 prepended by Alois P. Heinz, Dec 13 2020

A110520 Expansion of 1/(1-2*x*c(3*x)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 2, 10, 68, 538, 4652, 42628, 406856, 4001914, 40285724, 413049580, 4298523704, 45288486436, 482122686008, 5178044596168, 56038403289488, 610508962548538, 6690154684006268, 73693477140179548, 815508203755227608
Offset: 0

Views

Author

Paul Barry, Jul 24 2005

Keywords

Comments

Row sums of number triangle A110519.
Hankel transform is A135397. Hankel transform of the aerated sequence is A083667. - Paul Barry, Sep 15 2009

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Sum[j*Binomial[2n-j-1,n-j]*Binomial[j,k]*3^(n-j)/n,{j,0,n}],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Oct 18 2012 *)

Formula

a(0)=1, a(n) = Sum_{k=0..n} Sum_{j=0..n} j*C(2n-j-1, n-j)*C(j, k)*3^(n-j)/n, n > 0.
a(n) = Sum_{k=0..n} A039599(n,k)*(-1)^k*3^(n-k). - Philippe Deléham, Dec 11 2007
a(n) = Sum_{k=0..n} A094385(n,k)*2^k. - Philippe Deléham, Feb 26 2009
From Gary W. Adamson, Jul 12 2011: (Start)
a(n) = the top left term in M^n, M = the infinite square production matrix:
2, 2, 0, 0, 0, 0, ...
3, 3, 3, 0, 0, 0, ...
3, 3, 3, 3, 0, 0, ...
3, 3, 3, 3, 3, 0, ...
3, 3, 3, 3, 3, 3, ...
... (End)
n*a(n) + 2*(9-4*n)*a(n-1) + 24*(3-2*n)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011
a(n) ~ 3*12^n/(8*sqrt(Pi)n^(3/2)). - Vaclav Kotesovec, Oct 18 2012

A083670 Number of different antisymmetric relations on n unlabeled points.

Original entry on oeis.org

1, 2, 7, 44, 558, 16926, 1319358, 269695440, 146202099255, 212360894456310, 834625722216941739, 8954592469138636320960, 264305834899495393164591240, 21607243912704793462806305720502, 4921054357098031770205099867497197328
Offset: 0

Views

Author

Goetz Pfeiffer (Goetz.Pfeiffer(AT)nuigalway.ie), May 02 2003

Keywords

Crossrefs

Cf. A083667 (labeled antisymmetric relations).

Programs

  • GAP
    f := function(n) local s, m, c, t, x, a, j; s := 0; m := [1..n]; c := Combinations(m,2); t := Tuples(m,2); for x in ConjugacyClasses(SymmetricGroup(n)) do a := Representative(x); j := Length(Cycles(a,m)); s := s+Size(x)*2^j*3^(Length(Cycles(a,t,OnPairs))-Length(Cycles(a,c,OnSets))-j); od; return s/Factorial(n); end;
    
  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i - 1}], {i, 2, Length[v]}] + Sum[Quotient[v[[i]] - 1, 2], {i, 1, Length[v]}];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p]*2^Length[p], {p, IntegerPartitions[n]}]; s/n!];
    a /@ Range[0, 14] (* Jean-François Alcover, Jan 07 2021, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, (v[i]-1)\2)}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)*2^#p); s/n!} \\ Andrew Howroyd, Oct 24 2019

Formula

Euler transform of A101460. - Andrew Howroyd, Oct 24 2019

A127946 Hankel transform of central coefficients of (1+k*x-3x^2)^n, k arbitrary integer.

Original entry on oeis.org

1, -6, -108, 5832, 944784, -459165024, -669462604992, 2928229434235008, 38424226636031774976, -1512608105754026853705216, -178635992073339063368878599168, 63289660175631590117213474413627392, 67269440586795655766964092111705109663744
Offset: 0

Views

Author

Paul Barry, Feb 08 2007

Keywords

Comments

Hankel transform of A098333. The Hankel transform of e.g.f. Bessel_I(0,2*sqrt(-3)x) and its k-th binomial transforms, are given by a(n). In general, the Hankel transform of e.g.f. Bessel_I(0,2*sqrt(m)x) and its binomial transforms is 2^n*m^C(n+1,2).
Let T_n denote the n X n matrix with T_n(i,j) = 3^min(i,j); then a(n) = ((-1)^floor((n+1)/2))*det(T_(n+1))/3. - Lechoslaw Ratajczak, May 16 2021

Crossrefs

a(n) = A083667(n+1)/2.

Programs

Formula

a(n) = (cos(Pi*n/2) - sin(Pi*n/2))*6^n*3^C(n,2) = 2^n*(-3)^C(n+1,2).

A141342 A transform of the Fibonacci numbers.

Original entry on oeis.org

1, 1, -1, 3, -13, 65, -353, 2025, -12077, 74143, -465481, 2974863, -19289821, 126594191, -839273105, 5612483619, -37814455781, 256447068841, -1749182184793, 11991887667273, -82588248514885, 571118483653841
Offset: 0

Views

Author

Paul Barry, Jun 26 2008

Keywords

Comments

A transform of F(n+1) by the inverse of the Riordan array (1, x*(1+x)/(1-2*x)).
Equivalently, row sums of the inverse of the Riordan array (1, x/(2-sqrt(1+4*x)).
Hankel transform is alternating sign version of A083667.

Crossrefs

Cf. A141343.

Programs

  • Mathematica
    CoefficientList[Series[1/(1-2*x-2*x^2+x*Sqrt[1+8*x+4*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
  • PARI
    x='x+O('x^50); Vec(1/(1-2*x-2*x^2+x*sqrt(1+8*x+4*x^2))) \\ G. C. Greubel, Mar 21 2017

Formula

G.f.: 1/(1-2*x-2*x^2+x*sqrt(1+8*x+4*x^2)).
Conjecture: (n-1)*a(n) +4*(n-4)*a(n-1) + (65-29*n)*a(n-2) +12*(7-2*n)*a(n-3)+ 4*(4-n)*a(n-4) =0. - R. J. Mathar, Nov 14 2011
a(n) ~ (-1)^n * (5*sqrt(3)-14) * sqrt(2*sqrt(3)-3) * 2^(n+1/2) * (2+sqrt(3))^n / (121 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 01 2014

A341471 Number of antisymmetric, antitransitive relations on n labeled nodes.

Original entry on oeis.org

1, 1, 3, 21, 317, 9735, 583907, 66226033, 13837055261
Offset: 0

Views

Author

Peter Kagey, Feb 13 2021

Keywords

Comments

An antisymmetric, antitransitive relation is one where xRy implies "not yRx" and xRy and yRz implies "not xRz". All antitransitive relations are irreflexive, so this sequence is counting "anti-equivalence relations".
a(n) < A047656(n).
Idea thanks to Richard Arratia, who saw, verbatim in an editorial, "False equivalences? There were almost too many to count."

Examples

			There are a(3) = 21 antisymmetric, antitransitive relations on n = 3 letters:
  - the empty relation,
  - all six relations containing only a single pair (x,y) (with x != y),
  - all twelve relations {(x1,y1), (x2,y2)} containing exactly two ordered pairs, neither of which is (y1,x1) or (y2,x2), and
  - two relations containing three ordered pairs: {(1,2), (2,3), (3,1)} and {(1,3), (3,2), (2,1)}.
		

Crossrefs

Number of relations on labeled nodes: A000110 (equivalence), A001831 (transitive and antitransitive), A002416 (unrestricted), A006125 (symmetric), A006905 (transitive), A047656 (reflexive and antisymmetric), A083667 (antisymmetric), A341473 (antitransitive).

Extensions

a(6)-a(8) from Bert Dobbelaere, Feb 27 2021

A341473 The number of antitransitive relations on n labeled nodes.

Original entry on oeis.org

1, 1, 4, 39, 921, 47462, 5205915, 1161039833, 516101770210
Offset: 0

Views

Author

Peter Kagey, Feb 13 2021

Keywords

Comments

A relation is antitransitive if xRy and yRz implies "not xRz". As such, antitransitive relations are always irreflexive.

Crossrefs

Number of relations on labeled nodes: A000110 (equivalence), A002416 (unrestricted), A006125 (symmetric), A006905 (transitive), A047656 (reflexive and antisymmetric), A083667 (antisymmetric), A341471 (antisymmetric and antitransitive).

Extensions

a(6)-a(8) from Bert Dobbelaere, Feb 27 2021
Showing 1-8 of 8 results.