cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A002533 a(n) = 2*a(n-1) + 5*a(n-2), with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 7, 19, 73, 241, 847, 2899, 10033, 34561, 119287, 411379, 1419193, 4895281, 16886527, 58249459, 200931553, 693110401, 2390878567, 8247309139, 28449011113, 98134567921, 338514191407, 1167701222419, 4027973401873, 13894452915841, 47928772841047, 165329810261299
Offset: 0

Views

Author

Keywords

Comments

The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 6 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(6). - Cino Hilliard, Sep 25 2005
a(n), n>0 = term (1,1) in the n-th power of the 2 X 2 matrix [1,3; 2,1]. - Gary W. Adamson, Aug 06 2010
a(n) is the number of compositions of n when there are 1 type of 1 and 6 types of other natural numbers. - Milan Janjic, Aug 13 2010
Pisano period lengths: 1, 1, 1, 4, 4, 1, 24, 4, 3, 4, 120, 4, 56, 24, 4, 8, 288, 3, 18, 4, ... - R. J. Mathar, Aug 10 2012
a(k*m) is divisible by a(m) if k is odd. - Robert Israel, May 03 2024

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.

Crossrefs

The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.

Programs

  • Magma
    [(1/2)*Floor((1+Sqrt(6))^n+(1-Sqrt(6))^n): n in [0..30]]; // Vincenzo Librandi, Aug 15 2011
    
  • Magma
    [n le 2 select 1 else 2*Self(n-1) + 5*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 08 2018
  • Maple
    A002533:=(-1+z)/(-1+2*z+5*z**2); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    f[n_] := Simplify[((1 + Sqrt[6])^n + (1 - Sqrt[6])^n)/2]; Array[f, 28, 0] (* Or *)
    LinearRecurrence[{2, 5}, {1, 1}, 28] (* Or *)
    Table[ MatrixPower[{{1, 2}, {3, 1}}, n][[1, 1]], {n, 0, 25}]
    (* Robert G. Wilson v, Sep 18 2013 *)
  • PARI
    a(n)=([0,1; 5,2]^n*[1;1])[1,1] \\ Charles R Greathouse IV, May 10 2016
    
  • PARI
    x='x+O('x^30); Vec((1-x)/(1-2*x-5*x^2)) \\ G. C. Greubel, Jan 08 2018
    
  • Sage
    [lucas_number2(n,2,-5)/2 for n in range(0, 21)] # Zerinvary Lajos, Apr 30 2009
    

Formula

a(n)/A002532(n), n>0, converges to sqrt(6). - Mario Catalani (mario.catalani(AT)unito.it), Apr 22 2003
From Mario Catalani (mario.catalani(AT)unito.it), May 03 2003: (Start)
G.f.: (1-x)/(1-2*x-5*x^2).
a(n) = (1/2)*((1+sqrt(6))^n + (1-sqrt(6))^n).
a(n)/A083694(n) converges to sqrt(3/2).
a(n)/A083695(n) converges to sqrt(2/3).
a(n) = a(n-1) + 3*A083694(n-1).
a(n) = a(n-1) + 2*A083695(n-1), n>0. (End)
Binomial transform of expansion of cosh(sqrt(6)*x) (A000400, with interpolated zeros). E.g.f.: exp(x)*cosh(sqrt(6)*x) - Paul Barry, May 09 2003
From Mario Catalani (mario.catalani(AT)unito.it), Jun 14 2003: (Start)
a(2*n+1) = 2*a(n)*a(n+1) - (-5)^n.
a(n)^2 - 6*A002532(n)^2 = (-5)^n. (End)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k) * 6^k. - Paul Barry, Jul 25 2004
a(n) = Sum_{k=0..n} A098158(n,k)*6^(n-k). - Philippe Deléham, Dec 26 2007
If p(1)=1, and p(I)=6, for i>1, and if A is the Hessenberg matrix of order n defined by: A(i,j) = p(j-i+1) for i<=j, A(i,j)=-1 for i=j+1, and A(i,j)=0 otherwise. Then, for n>=1, a(n) = det A. - Milan Janjic, Apr 29 2010
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(6*k-1)/(x*(6*k+5) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013

A305492 a(n) = ((1 + y)^n - (1 - y)^n)/y with y = sqrt(8).

Original entry on oeis.org

0, 2, 4, 22, 72, 298, 1100, 4286, 16272, 62546, 238996, 915814, 3504600, 13419898, 51371996, 196683278, 752970528, 2882724002, 11036241700, 42251551414, 161756794728, 619274449354, 2370846461804, 9076614069086, 34749153370800
Offset: 0

Views

Author

Peter Luschny, Jun 02 2018

Keywords

Examples

			Array ((1+y)^n - (1-y)^n)/y with y = sqrt(k).
[k\n]
[1]   1, 2, 4,  8, 16, 32,   64,  128,    256,   512,   1024, ...
[2]   0, 2, 4, 10, 24, 58,  140,  338,    816,  1970,   4756, ...
[3]   0, 2, 4, 12, 32, 88,  240,  656,   1792,  4896,  13376, ...
[4]   0, 2, 4, 14, 40, 122, 364,  1094,  3280,  9842,  29524, ...
[5]   0, 2, 4, 16, 48, 160, 512,  1664,  5376, 17408,  56320, ...
[6]   0, 2, 4, 18, 56, 202, 684,  2378,  8176, 28242,  97364, ...
[7]   0, 2, 4, 20, 64, 248, 880,  3248, 11776, 43040, 156736, ...
[8]   0, 2, 4, 22, 72, 298, 1100, 4286, 16272, 62546, 238996, ...
[9]   0, 2, 4, 24, 80, 352, 1344, 5504, 21760, 87552, 349184, ...
		

Crossrefs

Let f(n, y) = ((1 + y)^n - (1 - y)^n)/y.
f(n, 1 ) = A000079(n);
f(n, sqrt(2)) = A163271(n+1);
f(n, sqrt(3)) = A028860(n+2);
f(n, 2 ) = A152011(n) for n>0;
f(n, sqrt(5)) = A103435(n);
f(n, sqrt(6)) = A083694(n);
f(n, sqrt(7)) = A274520(n);
f(n, sqrt(8)) = a(n);
f(n, 3 ) = A192382(n+1);
Cf. A305491.
Equals 2 * A015519.

Programs

  • Maple
    egf :=  (n,x) -> 2*exp(x)*sinh(sqrt(n)*x)/sqrt(n):
    ser := series(egf(8,x), x, 26):
    seq(n!*coeff(ser,x, n), n=0..24);
  • Mathematica
    Table[Simplify[((1 + Sqrt[8])^n - (1 - Sqrt[8])^n)/ Sqrt[8]], {n, 0, 24}]
  • PARI
    concat(0, Vec(2*x / (1 - 2*x - 7*x^2) + O(x^40))) \\ Colin Barker, Jun 05 2018

Formula

E.g.f.: 2*exp(x)*sinh(sqrt(n)*x)/sqrt(n) for n = 8.
From Colin Barker, Jun 02 2018: (Start)
G.f.: 2*x / (1 - 2*x - 7*x^2).
a(n) = 2*a(n-1) + 7*a(n-2) for n>1.
(End)

A152036 Triangular product sequence based 2^n times the Fibonacci version and 4 replaced with m: t(m,n)=2^n*Product[(1 + m*Cos[k*Pi/n]^2), {k, 1, Floor[(n - 1)/2]}].

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 4, 14, 1, 2, 4, 16, 48, 1, 2, 4, 18, 56, 202, 1, 2, 4, 20, 64, 248, 880, 1, 2, 4, 22, 72, 298, 1100, 4286, 1, 2, 4, 24, 80, 352, 1344, 5504, 21760, 1, 2, 4, 26, 88, 410, 1612, 6914, 28336, 118898, 1, 2, 4, 28, 96, 472, 1904, 8528, 36096, 157472
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Nov 20 2008

Keywords

Comments

The row sums are: {1, 3, 7, 21, 71, 283, 1219, 5785, 29071, 156291, 880507,...}. A sequence of sequences with the row numbers m instead of n: and the ratio increases with each row: at (1+Sqrt[5]) for m=4.

Examples

			1;
1, 2;
1, 2, 4;
1, 2, 4, 14;
1, 2, 4, 16, 48;
1, 2, 4, 18, 56, 202;
1, 2, 4, 20, 64, 248, 880;
1, 2, 4, 22, 72, 298, 1100, 4286;
1, 2, 4, 24, 80, 352, 1344, 5504, 21760;
1, 2, 4, 26, 88, 410, 1612, 6914, 28336, 118898;
1, 2, 4, 28, 96, 472, 1904, 8528, 36096, 157472, 675904;
		

Crossrefs

Cf. A103435 (row 4), A083694 (row 5)

Programs

  • Mathematica
    f[n_, m_] = 2^n*Product[(1 + m*Cos[k*Pi/n]^2), {k, 1, Floor[(n - 1)/2]}]; Table[Table[FullSimplify[ExpandAll[f[n, m]]], {n, 0, m}], {m, 0, 10}]

Formula

t(m,n)=2^n*Product[(1 + m*Cos[k*Pi/n]^2), {k, 1, Floor[(n - 1)/2]}].
Showing 1-3 of 3 results.