cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A083830 Palindromes of the form 3n + 1 where n is also a palindrome: palindromes arising in A083829.

Original entry on oeis.org

4, 7, 22, 232, 424, 454, 484, 727, 757, 787, 2332, 23332, 42124, 42424, 42724, 45154, 45454, 45754, 48184, 48484, 48784, 72127, 72427, 72727, 75157, 75457, 75757, 78187, 78487, 78787, 233332, 2333332, 4212124, 4215124, 4218124, 4242424
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 09 2003

Keywords

Crossrefs

Cf. A083829.

Programs

  • Mathematica
    Select[3#+1&/@Select[Range[15*10^5],PalindromeQ],PalindromeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 20 2020 *)

Extensions

Corrected and extended by Ray Chandler, May 21 2003

A083455 Duplicate of A083829.

Original entry on oeis.org

1, 2, 7, 77, 141, 151, 161, 242, 252, 262, 777, 7777, 14041, 14141, 14241, 15051
Offset: 1

Views

Author

Keywords

A083832 Palindromes of the form 4n + 1 where n is also a palindrome. Palindromes arising in A083831.

Original entry on oeis.org

5, 9, 33, 353, 525, 565, 929, 969, 3553, 35553, 52125, 52525, 52925, 56165, 56565, 56965, 92129, 92529, 92929, 96169, 96569, 96969, 355553, 3555553, 5212125, 5216125, 5252525, 5256525, 5292925, 5296925, 5612165, 5616165, 5652565
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 09 2003

Keywords

Crossrefs

Programs

  • Mathematica
    4#+1&/@Select[Range[1500000],AllTrue[{#,4#+1},PalindromeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 06 2017 *)

Extensions

Corrected and extended by Ray Chandler, May 21 2003

A083834 Palindromes of the form 5p + 1 where p is also a palindrome. Palindromes arising in A083833.

Original entry on oeis.org

6, 11, 111, 606, 656, 1111, 11111, 60106, 60606, 65156, 65656, 111111, 1111111, 6010106, 6015106, 6060606, 6065606, 6510156, 6515156, 6560656, 6565656, 11111111, 111111111, 601010106, 601060106, 601515106, 601565106, 606010606
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 09 2003

Keywords

Comments

From Michael S. Branicky, Jun 13 2021: (Start)
All terms start and end with the digit 6, except those consisting of d+1 1's, which arise from palindromes of d 2's.
If a(n) > 6 starts with a 6, then its second and second-to-last digits are either both 0 or both 5; and if it has 5 or more digits, its third and third-to-last digits are either both 1 or both 6; thus, terms in the latter case only start with 111, 601, 606, 651, 656.
Using ^ to denote repeated concatenation, contains terms of the forms 1^(d+1), arising from palindromes of the form 2^d; (60)^d 6, arising from (12)^d 1; and (65)^d 6, arising from (13)^d 1; among other patterns.
(Conjectures)
All terms contain only the digits {0, 1, 5, 6}.
For d odd, the only term with d digits is 1^d; equivalently, all terms starting with 6 have odd length. (End)

Crossrefs

Programs

  • Mathematica
    Select[5Select[Range@100000,PalindromeQ]+1,PalindromeQ] (* Giorgos Kalogeropoulos, Jun 11 2021 *)
  • PARI
    is(n) = my(x=(n-1)/5, dn=digits(n), dx); if(x!=ceil(x), return(0)); dx=digits(x); dn==Vecrev(dn) && dx==Vecrev(dx) && n>1 \\ Felix Fröhlich, Jun 11 2021
  • Python
    from itertools import product
    def ispal(n): s = str(n); return s == s[::-1]
    def pals(d, base=10): # all positive d-digit palindromes
        digits = "".join(str(i) for i in range(base))
        for p in product(digits, repeat=d//2):
            if d > 1 and p[0] == "0": continue
            left = "".join(p); right = left[::-1]
            for mid in [[""], digits][d%2]:
                t = int(left + mid + right)
                if t > 0: yield t
    def ok(pal): return ispal(5*pal+1)
    print([5*p+1 for d in range(1, 10) for p in pals(d) if ok(p)]) # Michael S. Branicky, Jun 11 2021
    

Extensions

Corrected and extended by Ray Chandler, May 21 2003

A083835 Palindromes n such that 6n + 1 is also a palindrome.

Original entry on oeis.org

1, 9, 99, 121, 131, 999, 9999, 12021, 12121, 13031, 13131, 99999, 999999, 1202021, 1203021, 1212121, 1213121, 1302031, 1303031, 1312131, 1313131, 9999999, 99999999, 120202021, 120212021, 120303021, 120313021, 121202121, 121212121
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 09 2003

Keywords

Crossrefs

Extensions

Corrected and extended by Ray Chandler, May 21 2003

A083831 Palindromes n such that 4n + 1 is also a palindrome.

Original entry on oeis.org

1, 2, 8, 88, 131, 141, 232, 242, 888, 8888, 13031, 13131, 13231, 14041, 14141, 14241, 23032, 23132, 23232, 24042, 24142, 24242, 88888, 888888, 1303031, 1304031, 1313131, 1314131, 1323231, 1324231, 1403041, 1404041, 1413141, 1414141
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 09 2003

Keywords

Comments

Among infinite subsequences are the repdigits 8...8 = 8*(10^k-1)/9. It appears that the only terms with an even number of digits are these for even k. - Robert Israel, Apr 04 2018

Examples

			13231 and 52925 are palindromes and 4*13231+1=52925, therefore 13231 is a term.
		

Crossrefs

Programs

  • Maple
    N:= 100: # to get the first N terms
    fe:= proc(x,d) local L;
       L:= convert(x,base,10);
       add(L[j]*(10^(d-j)+10^(d+j-1)),j=1..d)
    end proc:
    fo:= proc(x,d) local L;
      L:= convert(x,base,10);
      add(L[j]*(10^(d-j)+10^(d+j-2)),j=2..d) + L[1]*10^(d-1);
    end proc:
    ispali:= proc(n) local L;
       L:= convert(n,base,10);
       L = ListTools:-Reverse(L)
    end proc:
    count:= 0: Res:= NULL:
    for d from 1 while count < N do
      for x from 10^(d-1) to 10^d-1 while count < N do
        y:= fo(x,d);
      if ispali(4*y+1) then
         count:= count+1; Res:= Res, y;
      fi
    od:
    for x from 10^(d-1) to 10^d-1 while count < N do
        y:= fe(x,d);
      if ispali(4*y+1) then
         count:= count+1; Res:= Res, y;
      fi
    od:
    od:
    Res; # Robert Israel, Apr 04 2018
  • Mathematica
    Select[Range[15*10^5],AllTrue[{#,4#+1},PalindromeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 08 2018 *)
  • PARI
    isok(n) = my(dn = digits(n), dm = digits(4*n+1)); (Vecrev(dn) == dn) && (Vecrev(dm) == dm); \\ Michel Marcus, Apr 04 2018

Extensions

Corrected and extended by Reinhard Zumkeller and Ray Chandler, May 18 2003

A083833 Palindromes p such that 5p + 1 is also a palindrome.

Original entry on oeis.org

1, 2, 22, 121, 131, 222, 2222, 12021, 12121, 13031, 13131, 22222, 222222, 1202021, 1203021, 1212121, 1213121, 1302031, 1303031, 1312131, 1313131, 2222222, 22222222, 120202021, 120212021, 120303021, 120313021, 121202121, 121212121
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 09 2003

Keywords

Comments

From Michael S. Branicky, Jun 13 2021: (Start)
All terms start and end with the digit 1, except those consisting of d 2's, which lead to palindromes of d+1 1's.
If a(n) > 1 starts with 1, then its second and second-to-last digits are either both 2 or both 3; and if it has 5 or more digits, its third and third-to-last digits are either both 0 or both 1; thus, terms in the latter case only start with 120, 121, 130, 131, and 222.
Using ^ to denote repeated concatenation, contains terms of the forms 2^d, leading to palindromes of the form 1^(d+1); (12)^d 1, leading to (60)^d 6; and (13)^d 1, leading to (65)^d 6; among other patterns.
(Conjectures)
All terms contain only the digits {0, 1, 2, 3}.
For d even, the only term with d digits is 2^d; equivalently, all terms starting with 1 have odd length. (End)

Crossrefs

Programs

  • Mathematica
    Select[Range[23*10^5],AllTrue[{#,5#+1},PalindromeQ]&] (* The program generates the first 22 terms of the sequence. *) (* Harvey P. Dale, Dec 17 2024 *)
  • Python
    from itertools import product
    def ispal(n): s = str(n); return s == s[::-1]
    def pals(d, base=10): # all positive d-digit palindromes
        digits = "".join(str(i) for i in range(base))
        for p in product(digits, repeat=d//2):
            if d > 1 and p[0] == "0": continue
            left = "".join(p); right = left[::-1]
            for mid in [[""], digits][d%2]:
                t = int(left + mid + right)
                if t > 0: yield t
    def ok(pal): return ispal(5*pal+1)
    print([p for d in range(1, 10) for p in pals(d) if ok(p)]) # Michael S. Branicky, Jun 11 2021

Extensions

Corrected and extended by Ray Chandler, May 21 2003

A083836 Palindromes of the form 6n + 1 where n is also a palindrome. palindromes arising in A083835.

Original entry on oeis.org

7, 55, 595, 727, 787, 5995, 59995, 72127, 72727, 78187, 78787, 599995, 5999995, 7212127, 7218127, 7272727, 7278727, 7812187, 7818187, 7872787, 7878787, 59999995, 599999995, 721212127, 721272127, 721818127, 721878127, 727212727
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 09 2003

Keywords

Crossrefs

Programs

  • Mathematica
    6#+1&/@Select[Range[12121*10^4],AllTrue[{#,6#+1},PalindromeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 15 2018 *)

Extensions

More terms from Ray Chandler, May 21 2003

A083837 Smallest palindrome n such that kn + 1 is a palindrome, or 0 if no such number exists.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 55, 0, 5, 7, 8, 2, 0, 3, 4, 5, 1, 5, 0, 5, 4, 5, 2, 5, 3, 4, 0, 1, 7, 5, 4, 5, 0, 2, 8, 3, 0, 0, 1, 8, 4, 7, 9, 0, 2, 2, 0, 6, 0, 1, 2, 7, 6, 161, 7, 2, 0, 6, 8, 0, 1, 9, 3, 8, 7, 2, 0, 7, 8, 0, 2, 1, 3, 4, 0, 2, 0, 7, 4, 6, 2, 0, 1, 4, 6, 2, 0, 8, 4, 6, 2, 0, 3, 1, 6, 1, 0, 9, 0, 3
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 09 2003

Keywords

Comments

0 in sequence indicates no palindrome < 10^15 - Ray Chandler, Jul 13 2003

Examples

			a(3) = 1: 3*1 + 1 = 4; a(11) = 55, 55*11+1=606.
		

Crossrefs

Extensions

Corrected and extended by Ray Chandler, May 22 2003

A083838 Smallest palindrome of the form nk+1 where k is also a palindrome:, or 0 if no such number exists; palindromes arising in A083837.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 55, 11, 606, 0, 66, 99, 121, 33, 0, 55, 77, 101, 22, 111, 0, 121, 101, 131, 55, 141, 88, 121, 0, 33, 232, 171, 141, 181, 0, 77, 313, 121, 0, 0, 44, 353, 181, 323, 424, 0, 99, 101, 0, 313, 0, 55, 111, 393, 343, 9339, 414, 121, 0, 373, 505, 0, 66, 595
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 09 2003

Keywords

Comments

0 in sequence indicates no palindrome < 10^15 - Ray Chandler, Jul 13 2003

Examples

			a(9)=6*9+1=55, a(11)=55*11+1=606.
		

Crossrefs

Extensions

Corrected and extended by Ray Chandler, May 22 2003
Showing 1-10 of 10 results.