cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A164301 a(n) = ((1+4*sqrt(2))*(5+sqrt(2))^n + (1-4*sqrt(2))*(5-sqrt(2))^n)/2.

Original entry on oeis.org

1, 13, 107, 771, 5249, 34757, 226843, 1469019, 9472801, 60940573, 391531307, 2513679891, 16131578849, 103501150997, 663985196443, 4259325491499, 27321595396801, 175251467663533, 1124117982508907, 7210396068827811, 46249247090573249, 296653361322692837
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 12 2009

Keywords

Comments

Binomial transform of A164300. Fifth binomial transform of A164587. Inverse binomial transform of A164598.
This sequence is part of a class of sequences defined by the recurrence a(n,m) = 2*(m+1)*a(n-1,m) - ((m+1)^2 - 2)*a(n-2,m) with a(0) = 1 and a(1) = m+9. The generating function is Sum_{n>=0} a(n,m)*x^n = (1 - (m-7)*x)/(1 - 2*(m+1)*x + ((m+1)^2 - 2)*x^2) and has a series expansion in terms of Pell-Lucas numbers defined by a(n, m) = (1/2)*Sum_{k=0..n} binomial(n,k)*m^(n-k)*(5*Q(k) + 4*Q(k-1)). - G. C. Greubel, Mar 12 2021

Crossrefs

Sequences in the class a(n, m): A164298 (m=1), A164299 (m=2), A164300 (m=3), this sequence (m=4), A164598 (m=5), A164599 (m=6), A081185 (m=7), A164600 (m=8).

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(5+r)^n+(1-4*r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 17 2009
    
  • Mathematica
    LinearRecurrence[{10,-23},{1,13},20] (* Harvey P. Dale, Oct 15 2015 *)
  • PARI
    my(x='x+O('x^50)); Vec((1+3*x)/(1-10*x+23*x^2)) \\ G. C. Greubel, Sep 13 2017
    
  • Sage
    [( (1+3*x)/(1-10*x+23*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 12 2021

Formula

a(n) = 10*a(n-1) - 23*a(n-2) for n > 1; a(0) = 1, a(1) = 13.
G.f.: (1+3*x)/(1-10*x+23*x^2).
E.g.f.: ( cosh(sqrt(2)*x) + 4*sqrt(2)*sinh(sqrt(2)*x) )*exp(5*x). - G. C. Greubel, Sep 13 2017
From G. C. Greubel, Mar 12 2021: (Start)
a(n) = 2*A083880(n) + 8*A081182(n).
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*4^(n-k)*(5*Q(k) + 4*Q(k-1)), where Q(n) = Pell-Lucas(n) = A002203(n). (End)

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 17 2009

A162396 a(n) = 2*a(n-2) for n > 2; a(1) = 5, a(2) = 2.

Original entry on oeis.org

5, 2, 10, 4, 20, 8, 40, 16, 80, 32, 160, 64, 320, 128, 640, 256, 1280, 512, 2560, 1024, 5120, 2048, 10240, 4096, 20480, 8192, 40960, 16384, 81920, 32768, 163840, 65536, 327680, 131072, 655360, 262144, 1310720, 524288, 2621440, 1048576, 5242880
Offset: 1

Views

Author

Klaus Brockhaus, Jul 02 2009

Keywords

Comments

Binomial transform is A162268. Fifth binomial transform is A083880 without initial 1.

Crossrefs

Programs

  • Magma
    [ n le 2 select 8-3*n else 2*Self(n-2): n in [1..41] ];
    
  • Magma
    [Floor((3/2-(-1)^n)*2^(1/4*(2*n+3+(-1)^n))):  n in [1..50]]; // Vincenzo Librandi, Oct 09 2017
  • Maple
    A162396:=n->(3/2-(-1)^n)*2^(1/4*(2*n+3+(-1)^n)): seq(A162396(n), n=1..60); # Wesley Ivan Hurt, Oct 08 2017
  • Mathematica
    CoefficientList[Series[(5 + 2*x)/(1 - 2*x^2), {x, 0, 40}], x] (* Wesley Ivan Hurt, Oct 08 2017 *)
    RecurrenceTable[{a[1]==5, a[2]==2, a[n]==2 a[n-2]}, a, {n, 40}] (* Vincenzo Librandi, Oct 09 2017 *)

Formula

a(n) = (3/2-(-1)^n)*2^(1/4*(2*n+3+(-1)^n)).
G.f.: x*(5+2*x)/(1-2*x^2).

Extensions

G.f. corrected, formula simplified, comment added by Klaus Brockhaus, Sep 18 2009

A147957 a(n) = ((6 + sqrt(2))^n + (6 - sqrt(2))^n)/2.

Original entry on oeis.org

1, 6, 38, 252, 1732, 12216, 87704, 637104, 4663312, 34298208, 253025888, 1870171584, 13839178816, 102484311936, 759279663488, 5626889356032, 41707163713792, 309171726460416, 2292017151256064, 16992367115418624, 125979822242317312, 934017384983574528, 6924894663564105728
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)blogspot.com), Nov 17 2008

Keywords

Comments

6th binomial transform of A077957. Binomial transform of A083880. Inverse binomial transform of A147958. - Philippe Deléham, Nov 30 2008

Crossrefs

Programs

  • Magma
    Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((6+r2)^n+(6-r2)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 19 2008
    
  • Mathematica
    LinearRecurrence[{12, -34}, {1, 6}, 50] (* G. C. Greubel, Aug 17 2018 *)
  • PARI
    my(x='x+O('x^50)); Vec((1-6*x)/(1-12*x+34*x^2)) \\ G. C. Greubel, Aug 17 2018

Formula

From Philippe Deléham, Nov 19 2008: (Start)
a(n) = 12*a(n-1) - 34*a(n-2), n > 1; a(0)=1, a(1)=6.
G.f.: (1 - 6*x)/(1 - 12*x + 34*x^2).
a(n) = (Sum_{k=0..n} A098158(n,k)*6^(2k)*2^(n-k))/6^n. (End)
E.g.f.: exp(6*x)*cosh(sqrt(2)*x). - Ilya Gutkovskiy, Aug 11 2017

Extensions

Extended beyond a(6) by Klaus Brockhaus, Nov 19 2008

A083879 a(0)=1, a(1)=4, a(n) = 8*a(n-1) - 14*a(n-2), n >= 2.

Original entry on oeis.org

1, 4, 18, 88, 452, 2384, 12744, 68576, 370192, 2001472, 10829088, 58612096, 317289536, 1717746944, 9299922048, 50350919168, 272608444672, 1475954689024, 7991119286784, 43265588647936, 234249039168512, 1268274072276992
Offset: 0

Views

Author

Paul Barry, May 08 2003

Keywords

Comments

Binomial transform of A083878.
4th binomial transform of A077957. Inverse binomial transform of A083880. - Philippe Deléham, Nov 30 2008
From L. Edson Jeffery, Apr 26 2011: (Start)
Let G be the Gram matrix
G =
(4 1 0 1)
(1 4 1 0)
(0 1 4 -1)
(1 0 -1 4)
of A028997. Then a(n) = (1/4)*Trace(G^n). (End)

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{8,-14},{1,4},30] (* Harvey P. Dale, May 08 2013 *)

Formula

a(n) = 2^((n-2)/2)*(2*sqrt(2)-1)^n + 2^((n-2)/2)*(2*sqrt(2)+1)^n;
a(n) = Sum_{k=0..n} C(n, 2k)*5^(n-2k)2^k.
G.f.: (1-4x)/(1-8x+14x^2).
E.g.f.: exp(4x)cosh(x*sqrt(2)).
((4+sqrt(2))^n + (4-sqrt(2))^n)/2. Offset=0. a(3)=88. - Al Hakanson (hawkuu(AT)gmail.com), Oct 15 2008
a(n) = Sum_{k=0..n} A098158(n,k)*2^(3*k-n). - Philippe Deléham, Nov 30 2008
Showing 1-4 of 4 results.