A164301 a(n) = ((1+4*sqrt(2))*(5+sqrt(2))^n + (1-4*sqrt(2))*(5-sqrt(2))^n)/2.
1, 13, 107, 771, 5249, 34757, 226843, 1469019, 9472801, 60940573, 391531307, 2513679891, 16131578849, 103501150997, 663985196443, 4259325491499, 27321595396801, 175251467663533, 1124117982508907, 7210396068827811, 46249247090573249, 296653361322692837
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..100 from Vincenzo Librandi)
- Index entries for linear recurrences with constant coefficients, signature (10,-23).
Crossrefs
Programs
-
Magma
Z
:=PolynomialRing(Integers()); N :=NumberField(x^2-2); S:=[ ((1+4*r)*(5+r)^n+(1-4*r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 17 2009 -
Mathematica
LinearRecurrence[{10,-23},{1,13},20] (* Harvey P. Dale, Oct 15 2015 *)
-
PARI
my(x='x+O('x^50)); Vec((1+3*x)/(1-10*x+23*x^2)) \\ G. C. Greubel, Sep 13 2017
-
Sage
[( (1+3*x)/(1-10*x+23*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 12 2021
Formula
a(n) = 10*a(n-1) - 23*a(n-2) for n > 1; a(0) = 1, a(1) = 13.
G.f.: (1+3*x)/(1-10*x+23*x^2).
E.g.f.: ( cosh(sqrt(2)*x) + 4*sqrt(2)*sinh(sqrt(2)*x) )*exp(5*x). - G. C. Greubel, Sep 13 2017
From G. C. Greubel, Mar 12 2021: (Start)
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*4^(n-k)*(5*Q(k) + 4*Q(k-1)), where Q(n) = Pell-Lucas(n) = A002203(n). (End)
Extensions
Edited and extended beyond a(5) by Klaus Brockhaus, Aug 17 2009
Comments