cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A081250 Numbers k such that A081249(m)/m^2 has a local minimum for m = k.

Original entry on oeis.org

1, 3, 11, 33, 101, 303, 911, 2733, 8201, 24603, 73811, 221433, 664301, 1992903, 5978711, 17936133, 53808401, 161425203, 484275611, 1452826833, 4358480501, 13075441503, 39226324511, 117678973533, 353036920601, 1059110761803
Offset: 0

Views

Author

Klaus Brockhaus, Mar 17 2003

Keywords

Comments

The limit of the local minima, lim_{n->infinity} A081249(n)/n^2 = 1/10. For local maxima cf. A081251.

Examples

			11 is a term since A081249(10)/10^2 = 11/100 = 0.110, A081249(11)/11^2 = 13/121 = 0.107, A081249(12)/12^2 = 16/144 = 0.111.
		

Crossrefs

Programs

  • GAP
    List([0..30], n-> (5*3^n +(-1)^n -2)/4); # G. C. Greubel, Jul 14 2019
  • Magma
    [Floor(3^n*5/4): n in [0..30]]; // Vincenzo Librandi, Jun 10 2011
    
  • Maple
    a[0]:=1:a[1]:=3:for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2]+2 od: seq(a[n], n=0..30); # Zerinvary Lajos, Apr 28 2008
  • Mathematica
    Floor[5*3^Range[0, 30]/4] (* Wesley Ivan Hurt, Mar 30 2017 *)
  • PARI
    vector(30, n, n--; (5*3^n +(-1)^n -2)/4) \\ G. C. Greubel, Jul 14 2019
    
  • Sage
    [(5*3^n +(-1)^n -2)/4 for n in (0..30)] # G. C. Greubel, Jul 14 2019
    

Formula

a(n) = floor(3^n*5/4).
G.f.: x*(1+x^2)/((1-x)*(1+x)*(1-3*x)).
a(n) = 3*a(n-1) + 1*a(n-2) - 3*a(n-3).
a(n) = (5*3^n + (-1)^n - 2)/4. - Paul Barry, May 19 2003
a(n) = a(n-2) + 10*3^(n-2) for n > 1.
a(n+2) - a(n) = A005052(n).
a(2*n) = Sum_{j=1..n+1} A062107(2*j).
a(2*n+1) = Sum_{j=1..n+1} A062107(2*j+1).
With a leading 0, this is a(n) = (5*3^n - 6 + 4*0^n - 3*(-1)^n)/12, the binomial transform of A084183. - Paul Barry, May 19 2003
Convolution of 3^n and {1, 0, 2, 0, 2, 0, ...}. a(n) = Sum_{k=0..n} ((1 + (-1)^k) - 0^k)*3^(n-k) = Sum_{k=0..n} ((1 + (-1)^(n-k)) - 0^(n-k))3^k. - Paul Barry, Jul 19 2004
a(n) = 2*a(n-1) + 3*a(n-2) + 2, a(0)=1, a(1)=3. - Zerinvary Lajos, Apr 28 2008

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Jun 10 2011

A094359 Pair reversal of a Jacobsthal sequence.

Original entry on oeis.org

0, 1, 2, 2, 10, 6, 42, 22, 170, 86, 682, 342, 2730, 1366, 10922, 5462, 43690, 21846, 174762, 87382, 699050, 349526, 2796202, 1398102, 11184810, 5592406, 44739242, 22369622, 178956970, 89478486, 715827882, 357913942, 2863311530, 1431655766
Offset: 0

Views

Author

Paul Barry, Apr 26 2004

Keywords

Comments

Pair reversal of A078008.
Pisano period lengths: 1, 1, 6, 1, 4, 6, 6, 2, 18, 4, 10, 6, 12, 6, 12, 2, 8, 18, 18, 4, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

  • Magma
    [5*2^n/12-2*(-1)^n/3+(-2)^n/4: n in [0..35]]; // Vincenzo Librandi, Aug 12 2011

Formula

a(n) = 5*2^n/12 - 2(-1)^n/3 + (-2)^n/4.
G.f.: x*(1+3*x)/((1+x)*(1-4*x^2)).
a(n+1) - 2*a(n) = A000918(n) signed. - Paul Curtz, Jun 29 2008

A084184 Partial sums of a Jacobsthal related sequence.

Original entry on oeis.org

0, 1, 2, 7, 10, 31, 42, 127, 170, 511, 682, 2047, 2730, 8191, 10922, 32767, 43690, 131071, 174762, 524287, 699050, 2097151, 2796202, 8388607, 11184810, 33554431, 44739242, 134217727, 178956970, 536870911, 715827882, 2147483647, 2863311530, 8589934591
Offset: 0

Views

Author

Paul Barry, May 19 2003

Keywords

Comments

Partial sums of A084183.

Crossrefs

Programs

  • Maple
    A084184:=n->(5-(-1)^n)*(2^n-1)/6: seq(A084184(n), n=0..50); # Wesley Ivan Hurt, Jan 28 2017
  • Mathematica
    LinearRecurrence[{0,5,0,-4},{0,1,2,7},40] (* Harvey P. Dale, Jan 18 2015 *)
  • PARI
    concat(0, Vec(x*(1+2*x+2*x^2)/((1-x^2)*(1-4*x^2)) + O(x^40))) \\ Colin Barker, Sep 09 2016

Formula

G.f.: x*(1+2*x+2*x^2) / ((1-x^2)*(1-4*x^2)). - typo fixed by Colin Barker, Sep 09 2016
a(2*n+1) = A083420(n). a(2*n) = 2*A002450(n) = 2*A001045(2*n).
From Colin Barker, Sep 09 2016: (Start)
a(n) = (5-(-1)^n)*(2^n-1)/6.
a(n) = 5*a(n-2) - 4*a(n-4) for n>3.
(End)

A094360 Pair reversal of Jacobsthal-Lucas numbers.

Original entry on oeis.org

1, 2, 7, 5, 31, 17, 127, 65, 511, 257, 2047, 1025, 8191, 4097, 32767, 16385, 131071, 65537, 524287, 262145, 2097151, 1048577, 8388607, 4194305, 33554431, 16777217, 134217727, 67108865, 536870911, 268435457, 2147483647, 1073741825
Offset: 0

Views

Author

Paul Barry, Apr 26 2004

Keywords

Comments

Pair reversal of A014551

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-1,4,4},{1,2,7},40] (* Harvey P. Dale, May 22 2020 *)

Formula

G.f. : (1+3x+5x^2)/((1+x)(1-4x^2)); a(n)=2^n(5+3(-1)^n)/4-(-1)^n.
Showing 1-4 of 4 results.