cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084214 Inverse binomial transform of a math magic problem.

Original entry on oeis.org

1, 1, 4, 6, 14, 26, 54, 106, 214, 426, 854, 1706, 3414, 6826, 13654, 27306, 54614, 109226, 218454, 436906, 873814, 1747626, 3495254, 6990506, 13981014, 27962026, 55924054, 111848106, 223696214, 447392426, 894784854, 1789569706, 3579139414, 7158278826, 14316557654
Offset: 0

Views

Author

Paul Barry, May 19 2003

Keywords

Comments

Inverse binomial transform of A060816.

Crossrefs

Programs

  • Haskell
    a084214 n = a084214_list !! n
    a084214_list = 1 : xs where
       xs = 1 : 4 : zipWith (+) (map (* 2) xs) (tail xs)
    -- Reinhard Zumkeller, Aug 01 2011
    
  • Magma
    [(5*2^n-3*0^n+4*(-1)^n)/6: n in [0..35]]; // Vincenzo Librandi, Jun 15 2011
    
  • Maple
    A084214 := proc(n)
        (5*2^n - 3*0^n + 4*(-1)^n)/6 ;
    end proc:
    seq(A084214(n),n=0..60) ; # R. J. Mathar, Aug 18 2024
  • Mathematica
    f[n_]:=2/(n+1);x=3;Table[x=f[x];Numerator[x],{n,0,5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 12 2010 *)
    LinearRecurrence[{1,2},{1,1,4},50] (* Harvey P. Dale, Mar 05 2021 *)
  • PARI
    a(n) = 5<<(n-1)\3 + bitnegimply(1,n); \\ Kevin Ryde, Dec 20 2023

Formula

a(n) = (5*2^n - 3*0^n + 4*(-1)^n)/6.
G.f.: (1+x^2)/((1+x)*(1-2*x)).
E.g.f.: (5*exp(2*x) - 3*exp(0) + 4*exp(-x))/6.
From Paul Barry, May 04 2004: (Start)
The binomial transform of a(n+1) is A020989(n).
a(n) = A001045(n-1) + A001045(n+1) - 0^n/2. (End)
a(n) = Sum_{k=0..n} A001045(n+1)*C(1, k/2)*(1+(-1)^k)/2. - Paul Barry, Oct 15 2004
a(n) = a(n-1) + 2*a(n-2) for n > 2. - Klaus Brockhaus, Dec 01 2009
From Yuchun Ji, Mar 18 2019: (Start)
a(n+1) = Sum_{i=0..n} a(i) + 1 - (-1)^n, a(0)=1.
a(n) = A000975(n-3)*10 + 5 + (-1)^(n-3), a(0)=1, a(1)=1, a(2)=4. (End)
a(n) = A081254(n) + (n-1 mod 2). - Kevin Ryde, Dec 20 2023
a(n) = 2*A048573(n-2) for n>=2. - Alois P. Heinz, May 20 2025