A084214 Inverse binomial transform of a math magic problem.
1, 1, 4, 6, 14, 26, 54, 106, 214, 426, 854, 1706, 3414, 6826, 13654, 27306, 54614, 109226, 218454, 436906, 873814, 1747626, 3495254, 6990506, 13981014, 27962026, 55924054, 111848106, 223696214, 447392426, 894784854, 1789569706, 3579139414, 7158278826, 14316557654
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2).
Programs
-
Haskell
a084214 n = a084214_list !! n a084214_list = 1 : xs where xs = 1 : 4 : zipWith (+) (map (* 2) xs) (tail xs) -- Reinhard Zumkeller, Aug 01 2011
-
Magma
[(5*2^n-3*0^n+4*(-1)^n)/6: n in [0..35]]; // Vincenzo Librandi, Jun 15 2011
-
Maple
A084214 := proc(n) (5*2^n - 3*0^n + 4*(-1)^n)/6 ; end proc: seq(A084214(n),n=0..60) ; # R. J. Mathar, Aug 18 2024
-
Mathematica
f[n_]:=2/(n+1);x=3;Table[x=f[x];Numerator[x],{n,0,5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 12 2010 *) LinearRecurrence[{1,2},{1,1,4},50] (* Harvey P. Dale, Mar 05 2021 *)
-
PARI
a(n) = 5<<(n-1)\3 + bitnegimply(1,n); \\ Kevin Ryde, Dec 20 2023
Formula
a(n) = (5*2^n - 3*0^n + 4*(-1)^n)/6.
G.f.: (1+x^2)/((1+x)*(1-2*x)).
E.g.f.: (5*exp(2*x) - 3*exp(0) + 4*exp(-x))/6.
From Paul Barry, May 04 2004: (Start)
The binomial transform of a(n+1) is A020989(n).
a(n) = Sum_{k=0..n} A001045(n+1)*C(1, k/2)*(1+(-1)^k)/2. - Paul Barry, Oct 15 2004
a(n) = a(n-1) + 2*a(n-2) for n > 2. - Klaus Brockhaus, Dec 01 2009
From Yuchun Ji, Mar 18 2019: (Start)
a(n+1) = Sum_{i=0..n} a(i) + 1 - (-1)^n, a(0)=1.
a(n) = A000975(n-3)*10 + 5 + (-1)^(n-3), a(0)=1, a(1)=1, a(2)=4. (End)
a(n) = A081254(n) + (n-1 mod 2). - Kevin Ryde, Dec 20 2023
a(n) = 2*A048573(n-2) for n>=2. - Alois P. Heinz, May 20 2025
Comments