cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A182349 G.f.: exp( Sum_{n>=1} 6 * A084214(n) * x^n/n ) where g.f. of A084214 is (1+x^2)/((1+x)*(1-2*x)).

Original entry on oeis.org

1, 6, 30, 120, 435, 1446, 4536, 13560, 39045, 108950, 296178, 787368, 2053335, 5265750, 13306380, 33188040, 81815145, 199585830, 482290630, 1155444120, 2746489851, 6481600326, 15195437280, 35407315800, 82038719565, 189089191926, 433704632346, 990244936520
Offset: 0

Views

Author

Paul D. Hanna, Apr 25 2012

Keywords

Examples

			G.f.: A(x) = 1 + 6*x + 30*x^2 + 120*x^3 + 435*x^4 + 1446*x^5 + 4536*x^6 +...
such that
log(A(x))/6 = x + 4*x^2/2 + 6*x^3/3 + 14*x^4/4 + 26*x^5/5 + 54*x^6/6 + 106*x^7/7 + 214*x^8/8 +...+ A084214(n) * x^n/n +...
		

Crossrefs

Cf. A084214.

Programs

  • Mathematica
    CoefficientList[Series[1/((1+x)^4(1-2x)^5),{x,0,30}],x] (* or *) LinearRecurrence[{6,-6,-24,39,42,-72,-48,48,32},{1,6,30,120,435,1446,4536,13560,39045},30] (* Harvey P. Dale, Aug 11 2021 *)
  • PARI
    {A084214(n)=polcoeff((1+x^2)/((1+x)*(1-2*x+x*O(x^n))), n)}
    {a(n)=polcoeff(exp(sum(k=1, n, 6*A084214(k)*x^k/k)+x*O(x^n)), n)}
    for(n=0, 16, print1(a(n), ", "))

Formula

G.f.: 1/((1+x)^4*(1-2*x)^5).

A375476 a(3*n)=A001045(n+1), a(3*n+1)=A084214(n), a(3*n+2)=A000079(n) for n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 4, 5, 6, 8, 11, 14, 16, 21, 26, 32, 43, 54, 64, 85, 106, 128, 171, 214, 256, 341, 426, 512, 683, 854, 1024, 1365, 1706, 2048, 2731, 3414, 4096, 5461, 6826, 8192, 10923, 13654, 16384, 21845, 27306, 32768, 43691, 54614, 65536
Offset: 0

Views

Author

Paul Curtz, Aug 18 2024

Keywords

Crossrefs

Formula

G.f. 1 + x - x^2*(1+x+x^2+x^3+2*x^4+3*x^5) / ( (1+x)*(2*x^3-1)*(x^2-x+1) ).

A048654 a(n) = 2*a(n-1) + a(n-2); a(0)=1, a(1)=4.

Original entry on oeis.org

1, 4, 9, 22, 53, 128, 309, 746, 1801, 4348, 10497, 25342, 61181, 147704, 356589, 860882, 2078353, 5017588, 12113529, 29244646, 70602821, 170450288, 411503397, 993457082, 2398417561, 5790292204
Offset: 0

Views

Author

Keywords

Comments

Generalized Pellian with second term equal to 4.
The generalized Pellian with second term equal to s has the terms a(n) = A000129(n)*s + A000129(n-1). The generating function is -(1+s*x-2*x)/(-1+2*x+x^2). - R. J. Mathar, Nov 22 2007

Crossrefs

Programs

  • Haskell
    a048654 n = a048654_list !! n
    a048654_list =
       1 : 4 : zipWith (+) a048654_list (map (* 2) $ tail a048654_list)
    -- Reinhard Zumkeller, Aug 01 2011
    
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!((1+2*x)/(1-2*x-x^2))); // G. C. Greubel, Jul 26 2018
    
  • Mathematica
    LinearRecurrence[{2,1},{1,4},30] (* Harvey P. Dale, Jul 27 2011 *)
  • Maxima
    a[0]:1$
    a[1]:4$
    a[n]:=2*a[n-1]+a[n-2]$
    A048654(n):=a[n]$
    makelist(A048654(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
    
  • PARI
    a(n)=(([0, 1; 1,2]^n)*[1,4]~)[1] \\ Charles R Greathouse IV, May 18 2015
    
  • SageMath
    [lucas_number1(n+1,2,-1) +2*lucas_number1(n,2,-1) for n in (0..40)] # G. C. Greubel, Aug 09 2022

Formula

a(n) = ((3+sqrt(2))*(1+sqrt(2))^n - (3-sqrt(2))*(1-sqrt(2))^n)/2*sqrt(2).
a(n) = 2*A000129(n+2) - 3*A000129(n+1). - Creighton Dement, Oct 27 2004
G.f.: (1+2*x)/(1-2*x-x^2). - Philippe Deléham, Nov 03 2008
a(n) = binomial transform of 1, 3, 2, 6, 4, 12, ... . - Al Hakanson (hawkuu(AT)gmail.com), Aug 08 2009
E.g.f.: exp(x)*cosh(sqrt(2)*x) + 3*exp(x)*sinh(sqrt(2)*x)/sqrt(2). - Vaclav Kotesovec, Feb 16 2015
a(n) is the denominator of the continued fraction [4, 2, ..., 2, 4] with n-1 2's in the middle. For the numerators, see A221174. - Greg Dresden and Tongjia Rao, Sep 02 2021
a(n) = A001333(n) + A000129(n). - G. C. Greubel, Aug 09 2022

A048573 a(n) = a(n-1) + 2*a(n-2), a(0)=2, a(1)=3.

Original entry on oeis.org

2, 3, 7, 13, 27, 53, 107, 213, 427, 853, 1707, 3413, 6827, 13653, 27307, 54613, 109227, 218453, 436907, 873813, 1747627, 3495253, 6990507, 13981013, 27962027, 55924053, 111848107, 223696213, 447392427, 894784853, 1789569707, 3579139413, 7158278827, 14316557653
Offset: 0

Views

Author

Michael Somos, Jun 17 1999

Keywords

Comments

Number of positive integers requiring exactly n signed bits in the modified non-adjacent form representation. - Ralf Stephan, Aug 02 2003
The n-th entry (n>1) of the sequence is equal to the 1,1-entry of the n-th power of the unnormalized 4 X 4 Haar matrix: [1 1 1 0 / 1 1 -1 0 / 1 1 0 1 / 1 1 0 -1]. - Simone Severini, Oct 27 2004
Pisano period lengths: 1, 1, 6, 2, 2, 6, 6, 2, 18, 2, 10, 6, 12, 6, 6, 2, 8, 18, 18, 2, ... - R. J. Mathar, Aug 10 2012
For n >= 1, a(n) is the number of ways to tile a strip of length n+2 with blue squares and blue and red dominos, with the restriction that the first two tiles must be the same color. - Guanji Chen and Greg Dresden, Jul 15 2024

Examples

			G.f. = 2 + 3*x + 7*x^2 + 13*x^3 + 27*x^4 + 53*x^5 + 107*x^6 + 213*x^7 + 427*x^8 + ...
		

Crossrefs

Programs

  • Magma
    [(5*2^n+(-1)^n)/3: n in [0..35]]; // Vincenzo Librandi, Jul 05 2011
    
  • Mathematica
    LinearRecurrence[{1,2},{2,3},40] (* Harvey P. Dale, Dec 11 2017 *)
  • PARI
    {a(n) = if( n<0, 0, (5*2^n + (-1)^n) / 3)};
    
  • PARI
    {a(n) = if (n<0 ,0, if( n<2, n+2, a(n-1) + 2*a(n-2)))};
    
  • Sage
    [(5*2^n+(-1)^n)/3 for n in range(35)] # G. C. Greubel, Apr 10 2019

Formula

G.f.: (2 + x) / (1 - x - 2*x^2).
a(n) = (5*2^n + (-1)^n) / 3.
a(n) = 2^(n+1) - A001045(n).
a(n) = A084170(n)+1 = abs(A083581(n)-3) = A081254(n+1) - A081254(n) = A084214(n+2)/2.
a(n) = 2*A001045(n+1) + A001045(n) (note that 2 is the limit of A001045(n+1)/A001045(n)). - Paul Barry, Sep 14 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-3, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=-charpoly(A,-1). - Milan Janjic, Jan 27 2010
Equivalently, with different offset, a(n) = b(n+1) with b(0)=1 and b(n) = Sum_{i=0..n-1} (-1)^i (1 + (-1)^i b(i)). - Olivier Gérard, Jul 30 2012
a(n) = A000975(n-2)*10 + 5 + 2*(-1)^(n-2), a(0)=2, a(1)=3. - Yuchun Ji, Mar 18 2019
a(n+1) = Sum_{i=0..n} a(i) + 1 + (1-(-1)^n)/2, a(0)=2. - Yuchun Ji, Apr 10 2019
a(n) = 2^n + J(n+1) = J(n+2) + J(n+1) - J(n), where J is A001045. - Yuchun Ji, Apr 10 2019
a(n) = A001045(n+2) + A078008(n) = A062510(n+1) - A078008(n+1) = (A001045(n+2) + A062510(n+1))/2 = A014551(n) + 2*A001045(n). - Paul Curtz, Jul 14 2021
From Thomas Scheuerle, Jul 14 2021: (Start)
a(n) = A083322(n) + A024493(n).
a(n) = A127978(n) - A102713(n).
a(n) = A130755(n) - A166249(n).
a(n) = A007679(n) + A139763(n).
a(n) = A168642(n) XOR A007283(n).
a(n) = A290604(n) + A083944(n). (End)
From Paul Curtz, Jul 21 2021: (Start)
a(n) = 5*A001045(n) - A280560(n+1) = abs(A140360(n+1)) - A280560(n+1).
a(n) = 2^n + A001045(n+1) = A001045(n+3) - A000079(n).
a(n) = A001045(n+4) - A340627(n). (End)
a(n) = A001045(n+5) - A005010(n).
a(n+1) + a(n) = a(n+2) - a(n) = 5*2^n. - Michael Somos, Feb 22 2023
a(n) = A135318(2*n) + A135318(2*n+1) = A112387(2*n) + A112387(2*n+1). - Paul Curtz, Jun 26 2024
E.g.f.: (cosh(x) + 5*cosh(2*x) - sinh(x) + 5*sinh(2*x))/3. - Stefano Spezia, May 18 2025

Extensions

Formula of Milan Janjic moved here from wrong sequence by Paul D. Hanna, May 29 2010

A084215 Expansion of g.f.: (1+x^2)/(1-2*x).

Original entry on oeis.org

1, 2, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480, 40960, 81920, 163840, 327680, 655360, 1310720, 2621440, 5242880, 10485760, 20971520, 41943040, 83886080, 167772160, 335544320, 671088640, 1342177280, 2684354560, 5368709120, 10737418240
Offset: 0

Views

Author

Paul Barry, May 19 2003

Keywords

Comments

Associated with a math magic problem.
Elements are the sums of consecutive pairs of elements of A084214.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x^2)/(1-2*x))); // G. C. Greubel, Oct 08 2018
  • Mathematica
    Join[{1, 2, a = 5}, Table[a = 2*a, {n,0,40}]] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *)
    Table[Int[2^(n-2)*5],{n,0,40}] (* Taher Jamshidi, Sep 15 2012 *)
    CoefficientList[Series[(1 + x^2)/(1 - 2 x), {x, 0, 30}], x] (* G. C. Greubel, Oct 08 2018 *)
  • PARI
    x='x+O('x^30); Vec((1+x^2)/(1-2*x)) \\ G. C. Greubel, Oct 08 2018
    

Formula

a(n) = Sum_{k=0..n} 2^(n-k)*binomial(1, k/2)*(1+(-1)^k)/2. - Paul Barry, Oct 15 2004
a(n) = A020714(n-2), n > 1. - R. J. Mathar, Dec 19 2008
From Gary W. Adamson, Aug 26 2011: (Start)
a(n) is the sum of top row terms of M^n, M is an infinite square production matrix as follows:
1, 1, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, ...
...
E.g.: a(4) = 20 = (8 + 8 + 4) since the top row of M^4 = (8, 8, 4, 0, 0, 0, ...). (End)
a(n) = floor(2^(n-2)*5). - Taher Jamshidi, Sep 15 2012
a(n) = 2*a(n-1) for n >= 3, a(0) = 1, a(1) = 2, a(2) = 5. - Philippe Deléham, Mar 13 2013
E.g.f.: (5*exp(2*x) - 2*x - 1)/4. - Stefano Spezia, Feb 20 2023

A104509 Matrix inverse of triangle A104505, which is the right-hand side of triangle A084610 of coefficients in (1 + x - x^2)^n.

Original entry on oeis.org

1, 1, -1, 3, -2, 1, 4, -6, 3, -1, 7, -12, 10, -4, 1, 11, -25, 25, -15, 5, -1, 18, -48, 60, -44, 21, -6, 1, 29, -91, 133, -119, 70, -28, 7, -1, 47, -168, 284, -296, 210, -104, 36, -8, 1, 76, -306, 585, -699, 576, -342, 147, -45, 9, -1, 123, -550, 1175, -1580, 1485, -1022, 525, -200, 55, -10, 1, 199, -979, 2310, -3454, 3641
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2005

Keywords

Comments

Riordan array ( (1 + x^2)/(1 - x - x^2), -x/(1 - x - x^2) ) belonging to the hitting time subgroup of the Riordan group (see Peart and Woan). - Peter Bala, Jun 29 2015
The sums of absolute values along steep diagonals in this triangle are: 1, 1, 3, 4 + |-1|, 7 + |-2|, 11 + |-6|, 18 + |-12| + 1, ... and these are the tribonacci numbers A000213 that begin with 1, 1, 1, 3. To see this, replace the y in the g.f. A(x,y) = (1 + x^2)/(1-x-x^2 + x*y) with y=-x^2, multiply by x, and add 1, to obtain the g.f. (1 - x^2)/(1-x-x^2-x^3) for A000213. - Noah Carey and Greg Dresden, Nov 02 2021

Examples

			Rows begin:
   1;
   1,   -1;
   3,   -2,   1;
   4,   -6,   3,   -1;
   7,  -12,  10,   -4,   1;
  11,  -25,  25,  -15,   5,   -1;
  18,  -48,  60,  -44,  21,   -6,   1;
  29,  -91, 133, -119,  70,  -28,   7,  -1;
  47, -168, 284, -296, 210, -104,  36,  -8, 1;
  76, -306, 585, -699, 576, -342, 147, -45, 9, -1; ...
		

Crossrefs

Leftmost column is A000204 (Lucas numbers). Other columns include: A045925, A067988. Row sums are: {1,0,2,0,2,0,2,...}. Absolute row sums form: A099425. Antidiagonal sums are: {1,1,2,2,2,2,2,...}. Absolute antidiagonal sums are: A084214.

Programs

  • Maple
    S:= series((1 + x^2)/(1-x-x^2 + x*y),x, 20):
    for n from 0 to 19 do R[n]:= coeff(S,x,n) od:
    seq(seq(coeff(R[n],y,j),j=0..n), n=0..19); # Robert Israel, Jun 30 2015
  • Mathematica
    nmax = 11;
    T[n_, k_] := Coefficient[(1 + x - x^2)^n, x, n + k];
    M = Table[T[n, k], {n, 0, nmax}, {k, 0, nmax}] // Inverse;
    Table[M[[n+1, k+1]], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 27 2019 *)
  • PARI
    { T(n,k) = my(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff((1 + X^2)/(1-X-X^2 + X*Y),n,x),k,y); }
    
  • PARI
    { tabl(nn) = my(m = matrix(nn, nn, n, k, n--; k--; if((nMichel Marcus, Jun 30 2015
    
  • PARI
    { A104509(n,k) = if(n==0, k==0, (-1)^k * sum(i=0, (n-k)\2, n/(n-i) * binomial(n-k-i,i) * binomial(n-i,k) )); } \\ Max Alekseyev, Oct 11 2021

Formula

For n>=1, a(n,k) = (-1)^k * Sum_{i=0..[(n-k)/2]} n/(n-i) * binomial(n-i,i) * binomial(n-2*i,k) = (-1)^k * Sum_{i=0..[(n-k)/2]} n/(n-i) * binomial(n-k-i,i) * binomial(n-i,k). - Max Alekseyev, Oct 11 2021
G.f.: A(x, y) = (1 + x^2)/(1-x-x^2 + x*y).
G.f. for column k: g_k(x) = -(x^2+1)*x^k/(x^2+x-1)^(k+1). - Robert Israel, Jun 30 2015
G.f. for row n>=1 is the Lucas polynomial L_n(1-x). - Max Alekseyev, Oct 11 2021

A084640 Generalized Jacobsthal numbers.

Original entry on oeis.org

0, 1, 5, 11, 25, 51, 105, 211, 425, 851, 1705, 3411, 6825, 13651, 27305, 54611, 109225, 218451, 436905, 873811, 1747625, 3495251, 6990505, 13981011, 27962025, 55924051, 111848105, 223696211, 447392425, 894784851, 1789569705, 3579139411
Offset: 0

Views

Author

Paul Barry, Jun 06 2003

Keywords

Comments

This is the sequence A(0,1;1,2;4) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010

Crossrefs

Programs

  • Haskell
    a084640 n = a084640_list !! n
    a084640_list = 0 : 1 : (map (+ 4) $
       zipWith (+) (map (* 2) a084640_list) (tail a084640_list))
    -- Reinhard Zumkeller, May 23 2013
    
  • Magma
    [5*2^n/3+(-1)^n/3-2: n in [0..35]]; // Vincenzo Librandi, Jun 15 2011
    
  • Mathematica
    LinearRecurrence[{2,1,-2},{0,1,5},40] (* Harvey P. Dale, Oct 27 2015 *)
  • PARI
    x='x+O('x^50); Vec(x*(1+3*x)/((1-x^2)*(1-2*x))) \\ G. C. Greubel, Sep 26 2017

Formula

G.f.: x*(1+3*x)/((1-x^2)*(1-2*x)).
a(n) = a(n-1) + 2a(n-2) + 4, a(0)=0, a(1)=1.
a(n) = (5*2^n + (-1)^n - 6)/3.
a(n) = A001045(n+2) + 4*A000975(n-3).
a(n+1) - 2*a(n) = period 2: repeat 1, 3. - Paul Curtz, Apr 03 2008
Contribution from Paul Curtz, Dec 10 2009: (Start)
a(n+2) - a(n) = A020714(n).
Le the array D(n,k) of the first differences be defined via D(0,k) = a(k); D(n+1,k) = D(n,k+1)-D(n,k).
Then D(n,n) = 4*A131577(n); D(1,k) = A084214(k+1); D(2,k) = A115102(k-1) for k>0; D(3,k) = (-1)^(k+1)*A083581(k). (End)
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3), a(0)=0, a(1)=1, a(2)=5. Observed by G. Detlefs. See the W. Lang link. - Wolfdieter Lang, Oct 18 2010

A168648 a(n) = (10*2^n + 2*(-1)^n)/3 for n > 0; a(0) = 1.

Original entry on oeis.org

1, 6, 14, 26, 54, 106, 214, 426, 854, 1706, 3414, 6826, 13654, 27306, 54614, 109226, 218454, 436906, 873814, 1747626, 3495254, 6990506, 13981014, 27962026, 55924054, 111848106, 223696214, 447392426, 894784854, 1789569706, 3579139414
Offset: 0

Views

Author

Klaus Brockhaus, Dec 01 2009

Keywords

Crossrefs

Cf. A084214 ((5*2^n -3*0^n +4*(-1)^n)/6).

Programs

  • Magma
    [1] cat [ (10*2^n+2*(-1)^n)/3: n in [1..30] ];
    
  • Mathematica
    {1}~Join~Table[(10*2^n + 2*(-1)^n)/3, {n,40}] (* or *)
    {1}~Join~LinearRecurrence[{1,2}, {6,14}, 40] (* G. C. Greubel, Jul 28 2016 *)
  • PARI
    a(n) = if(n, (10<Charles R Greathouse IV, Jul 29 2016
    
  • Sage
    [1]+[(10*2^n +2*(-1)^n)/3 for n in (1..40)] # G. C. Greubel, Feb 05 2021

Formula

a(n) = A084214(n+2) for n > 0.
a(n) = a(n-1) + 2*a(n-2) for n > 2; a(0) = 1, a(1) = 6, a(2) = 14.
G.f.: (1+2*x)*(1+3*x)/((1+x)*(1-2*x)).
E.g.f.: (1/3)*(10*exp(2*x) - 9 + 2*exp(-x)). - G. C. Greubel, Jul 28 2016

A340627 a(n) = (11*2^n - 2*(-1)^n)/3 for n >= 0.

Original entry on oeis.org

3, 8, 14, 30, 58, 118, 234, 470, 938, 1878, 3754, 7510, 15018, 30038, 60074, 120150, 240298, 480598, 961194, 1922390, 3844778, 7689558, 15379114, 30758230, 61516458, 123032918, 246065834, 492131670, 984263338, 1968526678, 3937053354, 7874106710, 15748213418, 31496426838
Offset: 0

Views

Author

Paul Curtz, Apr 25 2021

Keywords

Comments

Based on A112387.
Prepended with 0, 1, its difference table is
0, 1, 1, 2, 1, 4, 3, 8, ... = mix A001045(n), 2^n.
1, 0, 1, -1, 3, -1, 5, -3, ... = mix A001045(n+1), -A001045(n).
-1, 1, -2, 4, -4, 6, -8, 14, ... = mix -2^n, A084214(n+1).
2, -3, 6, -8, 10, -14, 22, -30, ... = mix 2*A001045(n+2), -a(n).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 2}, {3, 8}, 35] (* Amiram Eldar, Apr 25 2021 *)
  • PARI
    a(n) = (11*2^n - 2*(-1)^n)/3 \\ Felix Fröhlich, Apr 25 2021

Formula

a(n) = 2^(n+2) - A078008(n), n>=0.
a(n) = (A062510(n) = 3*A001045(n)) + A001045(n+3), n>=0.
a(0)=3, a(2*n+1) = 2*a(2*n) + 2, a(2*n+2) = 2*a(2*n+1) - 2, n>=0.
a(n) = 4*A052997(n-1) + 2, n>=2. - Hugo Pfoertner, Apr 25 2021
a(n+1) = 11*2^n - a(n) for n>=0.
a(n+3) = 33*2^n - a(n) for n>=0.
a(n+5) = 121*2^n - a(n) for n>=0.
etc.
a(n+2) = a(n) + 11*2^n for n>=0.
a(n+4) = a(n) + 55*2^n for n>=0.
a(n+6) = a(n) + 231*2^n for n>=0.
etc.
G.f.: (3 + 5*x)/(1 - x - 2*x^2). - Stefano Spezia, Apr 26 2021
E.g.f: (11*exp(2*x) - 2*exp(-x))/3. - Jianing Song, Apr 26 2021

Extensions

More terms from Michel Marcus, Apr 25 2021
New name from Jianing Song, Apr 25 2021

A115102 a(0)=2, a(1)=8, a(n) = a(n-1) + 2*a(n-2).

Original entry on oeis.org

2, 8, 12, 28, 52, 108, 212, 428, 852, 1708, 3412, 6828, 13652, 27308, 54612, 109228, 218452, 436908, 873812, 1747628, 3495252, 6990508, 13981012, 27962028, 55924052, 111848108, 223696212, 447392428, 894784852, 1789569708, 3579139412, 7158278828
Offset: 0

Views

Author

Roger L. Bagula, Mar 02 2006

Keywords

Comments

Essentially 2 * A084214.

Crossrefs

Cf. A084214.

Programs

  • Mathematica
    LinearRecurrence[{1,2},{2,8},40] (* or *) Table[(4(-1)^x+5*2^x)/3,{x,40}] (* Harvey P. Dale, Sep 02 2016 *)

Formula

From R. J. Mathar, Jun 14 2011: (Start)
G.f.: (2+6*x)/( (1+x)*(1-2*x) ).
a(n) = 2*A084214(n+1). (End)
a(n) = (4*(-1)^n + 5*2^n)/3. - Harvey P. Dale, Sep 02 2016

Extensions

Edited by N. J. A. Sloane, Dec 04 2006
Showing 1-10 of 16 results. Next