A182349
G.f.: exp( Sum_{n>=1} 6 * A084214(n) * x^n/n ) where g.f. of A084214 is (1+x^2)/((1+x)*(1-2*x)).
Original entry on oeis.org
1, 6, 30, 120, 435, 1446, 4536, 13560, 39045, 108950, 296178, 787368, 2053335, 5265750, 13306380, 33188040, 81815145, 199585830, 482290630, 1155444120, 2746489851, 6481600326, 15195437280, 35407315800, 82038719565, 189089191926, 433704632346, 990244936520
Offset: 0
G.f.: A(x) = 1 + 6*x + 30*x^2 + 120*x^3 + 435*x^4 + 1446*x^5 + 4536*x^6 +...
such that
log(A(x))/6 = x + 4*x^2/2 + 6*x^3/3 + 14*x^4/4 + 26*x^5/5 + 54*x^6/6 + 106*x^7/7 + 214*x^8/8 +...+ A084214(n) * x^n/n +...
-
CoefficientList[Series[1/((1+x)^4(1-2x)^5),{x,0,30}],x] (* or *) LinearRecurrence[{6,-6,-24,39,42,-72,-48,48,32},{1,6,30,120,435,1446,4536,13560,39045},30] (* Harvey P. Dale, Aug 11 2021 *)
-
{A084214(n)=polcoeff((1+x^2)/((1+x)*(1-2*x+x*O(x^n))), n)}
{a(n)=polcoeff(exp(sum(k=1, n, 6*A084214(k)*x^k/k)+x*O(x^n)), n)}
for(n=0, 16, print1(a(n), ", "))
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 3, 4, 4, 5, 6, 8, 11, 14, 16, 21, 26, 32, 43, 54, 64, 85, 106, 128, 171, 214, 256, 341, 426, 512, 683, 854, 1024, 1365, 1706, 2048, 2731, 3414, 4096, 5461, 6826, 8192, 10923, 13654, 16384, 21845, 27306, 32768, 43691, 54614, 65536
Offset: 0
A048654
a(n) = 2*a(n-1) + a(n-2); a(0)=1, a(1)=4.
Original entry on oeis.org
1, 4, 9, 22, 53, 128, 309, 746, 1801, 4348, 10497, 25342, 61181, 147704, 356589, 860882, 2078353, 5017588, 12113529, 29244646, 70602821, 170450288, 411503397, 993457082, 2398417561, 5790292204
Offset: 0
- T. D. Noe, Table of n, a(n) for n = 0..300
- Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
- A. F. Horadam, Pell Identities, Fib. Quart., Vol. 9, No. 3, 1971, pp. 245-252.
- A. F. Horadam, Basic Properties of a Certain Generalized Sequence of Numbers, Fibonacci Quarterly, Vol. 3, No. 3, 1965, pp. 161-176.
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (2,1).
-
a048654 n = a048654_list !! n
a048654_list =
1 : 4 : zipWith (+) a048654_list (map (* 2) $ tail a048654_list)
-- Reinhard Zumkeller, Aug 01 2011
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!((1+2*x)/(1-2*x-x^2))); // G. C. Greubel, Jul 26 2018
-
LinearRecurrence[{2,1},{1,4},30] (* Harvey P. Dale, Jul 27 2011 *)
-
a[0]:1$
a[1]:4$
a[n]:=2*a[n-1]+a[n-2]$
A048654(n):=a[n]$
makelist(A048654(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
-
a(n)=(([0, 1; 1,2]^n)*[1,4]~)[1] \\ Charles R Greathouse IV, May 18 2015
-
[lucas_number1(n+1,2,-1) +2*lucas_number1(n,2,-1) for n in (0..40)] # G. C. Greubel, Aug 09 2022
A048573
a(n) = a(n-1) + 2*a(n-2), a(0)=2, a(1)=3.
Original entry on oeis.org
2, 3, 7, 13, 27, 53, 107, 213, 427, 853, 1707, 3413, 6827, 13653, 27307, 54613, 109227, 218453, 436907, 873813, 1747627, 3495253, 6990507, 13981013, 27962027, 55924053, 111848107, 223696213, 447392427, 894784853, 1789569707, 3579139413, 7158278827, 14316557653
Offset: 0
G.f. = 2 + 3*x + 7*x^2 + 13*x^3 + 27*x^4 + 53*x^5 + 107*x^6 + 213*x^7 + 427*x^8 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Wieb Bosma, Signed bits and fast exponentiation, Journal de théorie des nombres de Bordeaux, Vol. 13, No. 1 (2001), pp. 27-41.
- Karl Dilcher and Larry Ericksen, Continued fractions and Stern polynomials, Ramanujan Journal 45.3 (2018): 659-681. See Table 2.
- Karl Dilcher and Hayley Tomkins, Square classes and divisibility properties of Stern polynomials, Integers, Vol. 18 (2018), Article #A29.
- Petro Kosobutskyy, The Collatz problem as a reverse n->0 problem on a graph tree formed from theta*2^n Jacobsthal-type numbers, arXiv:2306.14635 [math.GM], 2023.
- Petro Kosobutskyy and Dariia Rebot, Collatz conjecture 3n+/-1 as a Newton binomial problem, Comp. Des. Sys. Theor. Prac., Lviv Nat'l Polytech. Univ. (Ukraine 2023) Vol. 5, No. 1, 137-145. See p. 140.
- Saad Mneimneh, Simple Variations on the Tower of Hanoi to Guide the Study of Recurrences and Proofs by Induction, Department of Computer Science, Hunter College, CUNY, 2019.
- Sam Northshield, Stern's diatomic sequence 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, ..., Amer. Math. Monthly, Vol. 117, No. 7 (2010), pp. 581-598.
- Index entries for linear recurrences with constant coefficients, signature (1,2).
-
[(5*2^n+(-1)^n)/3: n in [0..35]]; // Vincenzo Librandi, Jul 05 2011
-
LinearRecurrence[{1,2},{2,3},40] (* Harvey P. Dale, Dec 11 2017 *)
-
{a(n) = if( n<0, 0, (5*2^n + (-1)^n) / 3)};
-
{a(n) = if (n<0 ,0, if( n<2, n+2, a(n-1) + 2*a(n-2)))};
-
[(5*2^n+(-1)^n)/3 for n in range(35)] # G. C. Greubel, Apr 10 2019
A084215
Expansion of g.f.: (1+x^2)/(1-2*x).
Original entry on oeis.org
1, 2, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480, 40960, 81920, 163840, 327680, 655360, 1310720, 2621440, 5242880, 10485760, 20971520, 41943040, 83886080, 167772160, 335544320, 671088640, 1342177280, 2684354560, 5368709120, 10737418240
Offset: 0
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x^2)/(1-2*x))); // G. C. Greubel, Oct 08 2018
-
Join[{1, 2, a = 5}, Table[a = 2*a, {n,0,40}]] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *)
Table[Int[2^(n-2)*5],{n,0,40}] (* Taher Jamshidi, Sep 15 2012 *)
CoefficientList[Series[(1 + x^2)/(1 - 2 x), {x, 0, 30}], x] (* G. C. Greubel, Oct 08 2018 *)
-
x='x+O('x^30); Vec((1+x^2)/(1-2*x)) \\ G. C. Greubel, Oct 08 2018
A104509
Matrix inverse of triangle A104505, which is the right-hand side of triangle A084610 of coefficients in (1 + x - x^2)^n.
Original entry on oeis.org
1, 1, -1, 3, -2, 1, 4, -6, 3, -1, 7, -12, 10, -4, 1, 11, -25, 25, -15, 5, -1, 18, -48, 60, -44, 21, -6, 1, 29, -91, 133, -119, 70, -28, 7, -1, 47, -168, 284, -296, 210, -104, 36, -8, 1, 76, -306, 585, -699, 576, -342, 147, -45, 9, -1, 123, -550, 1175, -1580, 1485, -1022, 525, -200, 55, -10, 1, 199, -979, 2310, -3454, 3641
Offset: 0
Rows begin:
1;
1, -1;
3, -2, 1;
4, -6, 3, -1;
7, -12, 10, -4, 1;
11, -25, 25, -15, 5, -1;
18, -48, 60, -44, 21, -6, 1;
29, -91, 133, -119, 70, -28, 7, -1;
47, -168, 284, -296, 210, -104, 36, -8, 1;
76, -306, 585, -699, 576, -342, 147, -45, 9, -1; ...
- Robert Israel, Table of n, a(n) for n = 0..10152 (rows 0 to 141, flattened).
- P. Peart and W.-J. Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263.
- Wikipedia, Lucas polynomials.
Leftmost column is
A000204 (Lucas numbers). Other columns include:
A045925,
A067988. Row sums are: {1,0,2,0,2,0,2,...}. Absolute row sums form:
A099425. Antidiagonal sums are: {1,1,2,2,2,2,2,...}. Absolute antidiagonal sums are:
A084214.
-
S:= series((1 + x^2)/(1-x-x^2 + x*y),x, 20):
for n from 0 to 19 do R[n]:= coeff(S,x,n) od:
seq(seq(coeff(R[n],y,j),j=0..n), n=0..19); # Robert Israel, Jun 30 2015
-
nmax = 11;
T[n_, k_] := Coefficient[(1 + x - x^2)^n, x, n + k];
M = Table[T[n, k], {n, 0, nmax}, {k, 0, nmax}] // Inverse;
Table[M[[n+1, k+1]], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 27 2019 *)
-
{ T(n,k) = my(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff((1 + X^2)/(1-X-X^2 + X*Y),n,x),k,y); }
-
{ tabl(nn) = my(m = matrix(nn, nn, n, k, n--; k--; if((nMichel Marcus, Jun 30 2015
-
{ A104509(n,k) = if(n==0, k==0, (-1)^k * sum(i=0, (n-k)\2, n/(n-i) * binomial(n-k-i,i) * binomial(n-i,k) )); } \\ Max Alekseyev, Oct 11 2021
A084640
Generalized Jacobsthal numbers.
Original entry on oeis.org
0, 1, 5, 11, 25, 51, 105, 211, 425, 851, 1705, 3411, 6825, 13651, 27305, 54611, 109225, 218451, 436905, 873811, 1747625, 3495251, 6990505, 13981011, 27962025, 55924051, 111848105, 223696211, 447392425, 894784851, 1789569705, 3579139411
Offset: 0
-
a084640 n = a084640_list !! n
a084640_list = 0 : 1 : (map (+ 4) $
zipWith (+) (map (* 2) a084640_list) (tail a084640_list))
-- Reinhard Zumkeller, May 23 2013
-
[5*2^n/3+(-1)^n/3-2: n in [0..35]]; // Vincenzo Librandi, Jun 15 2011
-
LinearRecurrence[{2,1,-2},{0,1,5},40] (* Harvey P. Dale, Oct 27 2015 *)
-
x='x+O('x^50); Vec(x*(1+3*x)/((1-x^2)*(1-2*x))) \\ G. C. Greubel, Sep 26 2017
A168648
a(n) = (10*2^n + 2*(-1)^n)/3 for n > 0; a(0) = 1.
Original entry on oeis.org
1, 6, 14, 26, 54, 106, 214, 426, 854, 1706, 3414, 6826, 13654, 27306, 54614, 109226, 218454, 436906, 873814, 1747626, 3495254, 6990506, 13981014, 27962026, 55924054, 111848106, 223696214, 447392426, 894784854, 1789569706, 3579139414
Offset: 0
Cf.
A084214 ((5*2^n -3*0^n +4*(-1)^n)/6).
-
[1] cat [ (10*2^n+2*(-1)^n)/3: n in [1..30] ];
-
{1}~Join~Table[(10*2^n + 2*(-1)^n)/3, {n,40}] (* or *)
{1}~Join~LinearRecurrence[{1,2}, {6,14}, 40] (* G. C. Greubel, Jul 28 2016 *)
-
a(n) = if(n, (10<Charles R Greathouse IV, Jul 29 2016
-
[1]+[(10*2^n +2*(-1)^n)/3 for n in (1..40)] # G. C. Greubel, Feb 05 2021
A340627
a(n) = (11*2^n - 2*(-1)^n)/3 for n >= 0.
Original entry on oeis.org
3, 8, 14, 30, 58, 118, 234, 470, 938, 1878, 3754, 7510, 15018, 30038, 60074, 120150, 240298, 480598, 961194, 1922390, 3844778, 7689558, 15379114, 30758230, 61516458, 123032918, 246065834, 492131670, 984263338, 1968526678, 3937053354, 7874106710, 15748213418, 31496426838
Offset: 0
A115102
a(0)=2, a(1)=8, a(n) = a(n-1) + 2*a(n-2).
Original entry on oeis.org
2, 8, 12, 28, 52, 108, 212, 428, 852, 1708, 3412, 6828, 13652, 27308, 54612, 109228, 218452, 436908, 873812, 1747628, 3495252, 6990508, 13981012, 27962028, 55924052, 111848108, 223696212, 447392428, 894784852, 1789569708, 3579139412, 7158278828
Offset: 0
-
LinearRecurrence[{1,2},{2,8},40] (* or *) Table[(4(-1)^x+5*2^x)/3,{x,40}] (* Harvey P. Dale, Sep 02 2016 *)
Showing 1-10 of 16 results.
Comments