cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A047215 Numbers that are congruent to {0, 2} mod 5.

Original entry on oeis.org

0, 2, 5, 7, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, 77, 80, 82, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110, 112, 115, 117, 120, 122, 125, 127, 130, 132, 135, 137, 140, 142, 145, 147, 150, 152, 155, 157
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of 5n into exactly 2 parts. - Colin Barker, Mar 23 2015
Numbers k such that k^2/5 + k*(k + 1)/5 = k*(2*k + 1)/5 is a nonnegative integer. - Bruno Berselli, Feb 14 2017

Crossrefs

Different from A038126.
Cf. A249547 (partial sums), A010693 (1st differences).

Programs

Formula

a(n) = floor(5*n/2).
From R. J. Mathar, Sep 23 2008: (Start)
G.f.: x*(2 + 3*x)/((1 + x)*(1 - x)^2).
a(n) = 5*n/2 + ((-1)^n-1)/4.
a(n+1) - a(n) = A010693(n+1). (End)
a(n) = 5*n - a(n-1) - 8 with a(1)=0. - Vincenzo Librandi, Aug 05 2010
a(n+1) = Sum_{k>=0} A030308(n,k)*A084215(k+1). - Philippe Deléham, Oct 17 2011
a(n) = 2*n + floor(n/2). - Arkadiusz Wesolowski, Sep 19 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = log(5)/4 - sqrt(5)*log(phi)/10 + sqrt(1-2/sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 07 2021
E.g.f.: (5*x*exp(x) - sinh(x))/2. - David Lovler, Aug 22 2022

A011558 Expansion of (x + x^3)/(1 + x + ... + x^4) mod 2.

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0
Offset: 0

Views

Author

Keywords

Comments

Multiplicative with a(5^e) = 0, a(p^e) = 1 otherwise. - David W. Wilson, Jun 12 2005
Characteristic function of numbers coprime to 5. - Reinhard Zumkeller, Nov 30 2009
From R. J. Mathar, Jul 15 2010: (Start)
The sequence is the principal Dirichlet character mod 5. (The other real character mod 5 is A080891.)
Associated Dirichlet L-functions are for example L(2,chi) = Sum_{n>=1} a(n)/n^2 = 1.5791367... = (psi'(1/5) + psi'(2/5) + psi'(3/5) + psi'(4/5))/25 or L(3,chi) = Sum_{n>=1} a(n)/n^3 = 1.192440... = -(psi''(1/5) + psi''(2/5) + psi''(3/5) + psi''(4/5))/250, where psi' and psi'' are the trigamma and tetragamma functions. (End)
a(n) is for n >= 1 also the characteristic function for rational g-adic integers (+n/5)A047201).%20See%20the%20definition%20in%20the%20Mahler%20reference,%20p.%207%20and%20also%20p.%2010.%20-%20_Wolfdieter%20Lang">g and also (-n/5)_g for all integers g >= 2 without a factor of 5 (A047201). See the definition in the Mahler reference, p. 7 and also p. 10. - _Wolfdieter Lang, Jul 11 2014
Conjecture: a(n+1) is the number of ways of partitioning n into distinct parts of A084215. - R. J. Mathar, Mar 01 2023

Examples

			G.f. = x + x^2 + x^3 + x^4 + x^6 + x^7 + x^8 + x^9 + x^11 + x^12 + ...
		

References

  • Arthur Gill, Linear Sequential Circuits, McGraw-Hill, 1966, Eq. (17-10).
  • K. Mahler, p-adic numbers and their functions, 2nd ed., Cambridge University press, 1981.

Crossrefs

Cf. A000035, A011655, A109720 coprimality with 2, 3, 7, respectively.

Programs

  • Maple
    seq(n&^4 mod 5, n=0..50); # Gary Detlefs, Mar 20 2010
  • Mathematica
    Mod[#,2]&/@CoefficientList[Series[(x+x^3)/(1+x+x^2+x^3+x^4) ,{x,0,100}], x] (* or *) Flatten[Table[{0,1,1,1,1},{30}]] (* Harvey P. Dale, May 15 2011 *)
    a[ n_] := Sign@Mod[ n, 5]; (* Michael Somos, May 24 2015 *)
  • PARI
    a(n)=!!(n%5) \\ Charles R Greathouse IV, Sep 23 2012
    
  • PARI
    {a(n) = n%5>0}; /* Michael Somos, May 24 2015 */
    
  • Scheme
    (define (A011558 n) (if (zero? (modulo n 5)) 0 1)) ;; Antti Karttunen, Dec 21 2017

Formula

O.g.f.: x*(1+x+x^2+x^3)/(1-x^5). - Wolfdieter Lang, Feb 05 2009
From Reinhard Zumkeller, Nov 30 2009: (Start)
a(n) = 1 - A079998(n).
a(A047201(n))=1, a(A008587(n))=0.
A033437(n) = Sum_{k=0..n} a(k)*(n-k). (End)
a(n) = n^4 mod 5. - Gary Detlefs, Mar 20 2010
Sum_{n>=1} a(n)/n^s = L(s,chi) = (1-1/5^s)*Riemann_zeta(s), s > 1. - R. J. Mathar, Jul 31 2010
For the general case. The characteristic function of numbers that are not multiples of m is a(n) = floor((n-1)/m) - floor(n/m) + 1, m,n > 0. - Boris Putievskiy, May 08 2013
a(n) = sgn(n mod 5). - Wesley Ivan Hurt, Jun 30 2013
Euler transform of length 5 sequence [ 1, 0, 0, -1, 1]. - Michael Somos, May 24 2015
Moebius transform is length 5 sequence [ 1, 0, 0, 0, -1]. - Michael Somos, May 24 2015
G.f.: f(x) - f(x^5) where f(x) := x / (1 - x). - Michael Somos, May 24 2015
|a(n)| = |A080891(n)| = |A100047(n)|. - Michael Somos, May 24 2015

Extensions

More terms from Antti Karttunen, Dec 21 2017

A257113 a(1) = 2, a(2) = 3; thereafter a(n) is the sum of all the previous terms.

Original entry on oeis.org

2, 3, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480, 40960, 81920, 163840, 327680, 655360, 1310720, 2621440, 5242880, 10485760, 20971520, 41943040, 83886080, 167772160, 335544320, 671088640, 1342177280, 2684354560, 5368709120, 10737418240
Offset: 1

Views

Author

Giovanni Teofilatto, Apr 24 2015

Keywords

Comments

Except for first three terms, a(n) is 10 times 2^(n-4).
These values comprise the tile values used in the "fives" variant of the game 2048, including 1 as the zeroth term. - Michael De Vlieger, Jul 18 2018

Crossrefs

Cf. A000079, A020714. Essenitally the same as A084215.

Programs

Formula

a(n) = A020714(n-3) for n>2.
a(n) = A146523(n-2) for n>2. - R. J. Mathar, May 14 2015
G.f.: x*(1 - x)*(2 + x) / (1 - 2*x). - Colin Barker, Nov 17 2018

A216228 Square array T, read by antidiagonals: T(n,k) = 0 if n-k>=1 or if k-n>=3, T(0,0) = T(0,1) = T(0,2) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 32
Offset: 0

Views

Author

Philippe Deléham, Mar 13 2013

Keywords

Comments

An arithmetic hexagon of E. Lucas.

Examples

			Square array begins:
1, 1, 1, 0, 0,  0,  0,  0, ... row n=0
0, 1, 2, 2, 0,  0,  0,  0, ... row n=1
0, 0, 2, 4, 4,  0,  0,  0, ... row n=2
0, 0, 0, 4, 8,  8,  0,  0, ... row n=3
0, 0, 0, 0, 8, 16, 16,  0, ... row n=4
0, 0, 0, 0, 0, 16, 32, 32, ... row n=5
...
		

References

  • E. Lucas, Théorie des nombres, Albert Blanchard, Paris 1958, Tome 1, p.89

Crossrefs

Formula

T(n,n) = A011782(n).
T(n,n+1) = T(n,n+2) = 2^n = A000079(n).
Sum_{k, 0<=k<=n} T(n-k,k) = A016116(n).
Sum_{n, n>=0} T(n,k) = A084215(k).
Sum_{k, k>=0} T(n,k) = A084215(n+1), n>=1.

A146523 Binomial transform of A010685.

Original entry on oeis.org

1, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480, 40960, 81920, 163840, 327680, 655360, 1310720, 2621440, 5242880, 10485760, 20971520, 41943040, 83886080, 167772160, 335544320, 671088640, 1342177280, 2684354560, 5368709120, 10737418240
Offset: 0

Views

Author

Philippe Deléham, Oct 30 2008

Keywords

Comments

Linked to A029609 by a Catalan transform.
Hankel transform is (1, -15, 0, 0, 0, 0, 0, 0, 0, ...).

Crossrefs

Programs

Formula

a(n) = 5*2^(n-1) for n >= 1, a(0) = 1.
a(n) = Sum_{k=0..n} A109466(n,k)*A029609(k).
a(n) = A084215(n+1) = A020714(n-1), n > 0. - R. J. Mathar, Nov 02 2008
G.f.: (1 + 3*x)/(1 - 2*x). - Vladimir Joseph Stephan Orlovsky, Jun 21 2011
G.f.: G(0), where G(k)= 1 + 3*x/(1 - 2*x/(2*x + 3*x/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 03 2013
E.g.f.: (5*exp(2*x) - 3)/2. - Stefano Spezia, Feb 20 2023

A141495 a(n) = 3*a(n-1) for n>2; a(0)=1, a(1)=3, a(2)=7.

Original entry on oeis.org

1, 3, 7, 21, 63, 189, 567, 1701, 5103, 15309, 45927, 137781, 413343, 1240029, 3720087, 11160261, 33480783, 100442349, 301327047, 903981141, 2711943423, 8135830269, 24407490807, 73222472421, 219667417263, 659002251789
Offset: 0

Views

Author

Roger L. Bagula, Aug 10 2008

Keywords

Comments

A sequence of the form: a(0)=1, a(1)=prime(m), a(2)=prime(m+2), a(n)=a(1)*a(n-1).
a(n) is divisible by 7 for n>1. - Colin Barker, Jan 09 2014

Crossrefs

Essentially the same as A005032 and A084215. For other examples see A141496, etc.

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; a[2] = 7; a[n_] := a[n] = a[1]*a[n - 1]; Table[a[n], {n, 0, 30}]
    Join[{1,3},NestList[3#&,7,30]] (* Harvey P. Dale, Aug 05 2024 *)

Formula

a(n) = A082541(n-1), n>1. - R. J. Mathar, Aug 27 2008
a(n) = 7*3^(n-2) for n>1. a(n)=3*a(n-1) for n>2. G.f.: (2*x^2-1) / (3*x-1). - Colin Barker, Jan 09 2014

Extensions

Edited by N. J. A. Sloane, Aug 16 2008

A129687 A129686 * A007318.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 4, 3, 1, 2, 6, 7, 4, 1, 2, 8, 13, 11, 5, 1, 2, 10, 21, 24, 16, 6, 1, 2, 12, 31, 45, 40, 22, 7, 1, 2, 14, 43, 76, 85, 62, 29, 8, 1, 2, 16, 57, 119, 161, 147, 91, 37, 9, 1, 2, 18, 73, 176, 280, 308, 238, 128, 46, 10, 1, 2, 20, 91, 249, 456
Offset: 0

Views

Author

Gary W. Adamson, Apr 28 2007

Keywords

Comments

Row sums = A084215: (1, 2, 5, 10, 20, 40, 80, ...). A007318 * A129686 = A124725.
From Philippe Deléham, Feb 12 2014: (Start)
Riordan array ((1+x^2)/(1-x), x/(1-x)).
Diagonal sums are A000032(n) - 0^n (cf. A000204).
T(n,0) = A046698(n+1).
T(n+1,1) = A004277(n).
T(n+2,2) = A002061(n+1).
T(n+3,3) = A006527(n+1) = A167875(n).
T(n+4,4) = A006007(n+1).
T(n+5,5) = A081282(n+1). (End)

Examples

			First few rows of the triangle:
  1;
  1,   1;
  2,   2,   1;
  2,   4,   3,   1;
  2,   6,   7,   4,   1;
  2,   8,  13,  11,   5,   1;
  2,  10,  21,  24,  16,   6,   1;
  2,  12,  31,  45,  40,  22,   7,   1;
  2,  14,  43,  76,  85,  62,  29,   8,   1;
  2,  16,  57, 119, 161, 147,  91,  37,   9,   1;
  ...
		

Crossrefs

Formula

A129686 * A007318 (Pascal's Triangle), as infinite lower triangular matrices.
T(n,k) = T(n-1,k) + T(n-1,k-1), T(0,0) = T(1,0) = T(1,1) = T(2,2) = 1, T(2,0) = T(2,1) = 2, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Feb 12 2014

Extensions

More terms from Philippe Deléham, Feb 12 2014

A287798 Least k such that A006667(k)/A006577(k) = 1/n.

Original entry on oeis.org

159, 6, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480, 40960, 81920, 163840, 327680, 655360, 1310720, 2621440, 5242880, 10485760, 20971520, 41943040, 83886080, 167772160, 335544320, 671088640, 1342177280, 2684354560, 5368709120, 10737418240
Offset: 3

Views

Author

Michel Lagneau, Jun 01 2017

Keywords

Comments

A006667: number of tripling steps to reach 1 in '3x+1' problem.
A006577: number of halving and tripling steps to reach 1 in '3x+1' problem.
a(n) = {159, 6} union {A020714}.

Examples

			a(3) = 159 because A006667(159)/A006577(159) = 18/54 = 1/3.
		

Crossrefs

Cf. A006577, A006666, A006667. Essentially the same as A020714, A084215, A146523 and A257113.

Programs

  • Maple
    nn:=10^12:
    for n from 3 to 35 do:
    ii:=0:
    for k from 2 to 10^6 while(ii=0) do:
      m:=k:s1:=0:s2:=0:
       for i from 1 to nn while(m<>1) do:
        if irem(m,2)=0
         then
         s2:=s2+1:m:=m/2:
         else
         s1:=s1+1:m:=3*m+1:
        fi:
       od:
        if n*s1=s1+s2
         then
         ii:=1: printf(`%d, `,k):
         else
        fi:
    od:od:
  • Mathematica
    f[u_]:=Module[{a=u,k=0},While[a!=1,k++;If[EvenQ[a],a=a/2,a=a*3+1]];k];Table[f[u],{u,10^7}];g[v_]:=Count[Differences[NestWhileList[If[EvenQ[#],#/2,3#+1]&,v,#>1&]],_?Positive];Table[g[v],{v,10^7}];Do[k=3;While[g[k]/f[k]!=1/n,k++];Print[n," ",k],{n,3,35}]
  • PARI
    a(n) = if(n < 5, [0,0,159,6][n], 5<<(n-5)) \\ David A. Corneth, Jun 01 2017
    
  • PARI
    Vec(x^3*(159 - 312*x - 7*x^2) / (1 - 2*x) + O(x^50)) \\ Colin Barker, Jun 01 2017

Formula

For n >= 5, a(n) = 5*2^n/32. - David A. Corneth, Jun 01 2017
From Colin Barker, Jun 01 2017: (Start)
G.f.: x^3*(159 - 312*x - 7*x^2) / (1 - 2*x).
a(n) = 2*a(n-1) for n>5.
(End)

A124459 Square array resulting from the bisection of array A124458. (The other array is A093560.)

Original entry on oeis.org

2, 3, 2, 3, 5, 2, 3, 8, 7, 2, 3, 11, 15, 9, 2, 3, 14, 26, 24, 11, 2, 3, 17, 40, 50, 35, 13, 2, 3, 20, 57, 90, 85, 48, 15, 2, 3, 23, 77, 147, 175, 133, 63, 17, 2, 3, 26, 100, 224, 322, 308, 196, 80, 19, 2, 3, 29, 126, 324, 546, 630, 504, 276, 99, 21, 2, 3, 32, 155, 450, 870, 1176
Offset: 1

Views

Author

Alford Arnold, Nov 09 2006

Keywords

Comments

Apparently the same as A029618 if the first term is ignored. - R. J. Mathar, Jun 18 2008

Examples

			Given the square array
1 2 3 3 3 3 3 3 3 3
1 2 4 5 7 8 10 11 13
1 2 5 7 12 15 22 26
1 2 6 9 18 24 40
1 2 7 11 25 35
1 2 8 13 33 (Table A124458)
1 2 9 15
1 2 10
1 2
1
Omit these odd columns:
1 3 3 3 3 3 3 3 3 3 3
1 4 7 10 13 16 19 22 25 28
1 5 12 22 35 51 70 92 117
1 6 18 40 75 126 196 288
1 7 25 65 140 266 462
1 8 33 98 238 504
1 9 42 140 378
1 10 52 192 (Table A093560)
1 11 63
1 12
1
which yields the square array A124459
		

Crossrefs

Cf. A084215 (antidiagonal sums).

Programs

  • Maple
    Reppasc := proc(n,k) binomial(n+floor(k/2),n) ; end: A124458 := proc(n,k) add(Reppasc(n,i), i=max(0,k-3)..k-1) ; end: A124459 := proc(n,k) A124458(n,2*k) ; end: for d from 1 to 19 do for k from d to 1 by -1 do n := d-k ; printf("%d,",A124459(n,k)) ; od: od: # R. J. Mathar, Jun 18 2008

Extensions

More terms from R. J. Mathar, Jun 18 2008

A141496 a(0)=1; a(1)=5; a(2)=11; a(n)=a(1)*a(n-1).

Original entry on oeis.org

1, 5, 11, 55, 275, 1375, 6875, 34375, 171875, 859375, 4296875, 21484375, 107421875, 537109375, 2685546875, 13427734375, 67138671875, 335693359375, 1678466796875, 8392333984375, 41961669921875, 209808349609375
Offset: 0

Views

Author

Roger L. Bagula, Aug 10 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Clear[a] a[0] = 1; a[1] = 5; a[2] = 11; a[n_] := a[n] = a[1]*a[n - 1]; Table[a[n], {n, 0, 30}]

Formula

a(n) = 11*5^(n-2) for n>1. a(n) = 5*a(n-1) for n>2. G.f.: (1-14*x^2)/(1-5*x). [Colin Barker, Oct 13 2012]

Extensions

Edited by N. J. A. Sloane, Aug 16 2008
Showing 1-10 of 11 results. Next