A373040 a(n) = (A084218(n) - 1)/12.
0, 1, 6, 17, 50, 79, 196, 273, 492, 651, 1210, 1247, 2366, 2549, 3656, 4369, 6936, 6397, 10830, 10267, 14314, 15731, 23276, 19935, 31300, 30759, 39858, 40197, 58870, 47529, 76880, 69905, 88336, 90169, 117846, 100877, 156066, 140791, 172724, 164123, 235340, 186083
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := (p^(4*e + 2) + 1)/(p^2 + 1); a[1] = 0; a[n_] := (Times @@ f @@@ FactorInteger[n] - 1) / 12; Array[a, 35] (* Amiram Eldar, Jan 03 2025 *)
-
PARI
a(n) = (sigma(n^2, 4)/sigma(n^2, 2) - 1)/12
Formula
From Amiram Eldar, Jan 03 2025: (Start)
Dirichlet g.f.: (zeta(s-4)/zeta(s-2) - zeta(s))/12.
Sum_{k=1..n} a(k) ~ c * n^5, where c = zeta(5)/(60*zeta(3)) = 0.0143771... . (End)
Comments