cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A084381 a(n) = n^3 + 5.

Original entry on oeis.org

5, 6, 13, 32, 69, 130, 221, 348, 517, 734, 1005, 1336, 1733, 2202, 2749, 3380, 4101, 4918, 5837, 6864, 8005, 9266, 10653, 12172, 13829, 15630, 17581, 19688, 21957, 24394, 27005, 29796, 32773, 35942, 39309, 42880, 46661, 50658, 54877, 59324, 64005
Offset: 0

Views

Author

Cino Hilliard, Jun 23 2003

Keywords

Crossrefs

Programs

Formula

G.f.: (5 - 14*x + 19*x^2 - 4*x^3)/(1 - x)^4. - Vincenzo Librandi, Jun 09 2016
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. - Vincenzo Librandi, Jun 09 2016

Extensions

Offset 0 and a(0) = 5 by Vincenzo Librandi, Jun 09 2016

A084377 a(n) = n^3 + 7.

Original entry on oeis.org

7, 8, 15, 34, 71, 132, 223, 350, 519, 736, 1007, 1338, 1735, 2204, 2751, 3382, 4103, 4920, 5839, 6866, 8007, 9268, 10655, 12174, 13831, 15632, 17583, 19690, 21959, 24396, 27007, 29798, 32775, 35944, 39311, 42882, 46663, 50660, 54879, 59326
Offset: 0

Views

Author

Cino Hilliard, Jun 23 2003

Keywords

Comments

These numbers cannot be perfect squares. - Cino Hilliard, Sep 03 2006
[The following short proof was supplied by Don Reble. - N. J. A. Sloane, Apr 10 2023]
Proof that n^3+7 <> k^2 for all integers n,k.
Assume y^2 - x^3 = 7 has an integer solution.
Modulo 4, we have {0,1,0,1} - {0,1,0,3} == 3; y is even and x is odd.
y^2+1 = x^3+8 = (x+2) [(x-1)^2+3]. Let z = (x-1)^2+3 == 3 mod 4.
The 1-mod-4 numbers are closed under multiplication, so z has a prime factor p == 3 mod 4.
That p divides y^2+1; y^2 == -1 mod p.
But (quadratic reciprocity) there is no square root of -1 modulo p.
That refutes the assumption.

Crossrefs

Programs

Formula

G.f.: (7 - 20*x + 25*x^2 - 6*x^3)/(1 - x)^4. - Vincenzo Librandi, Jun 10 2016
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. - Vincenzo Librandi, Jun 10 2016

Extensions

More terms from Franklin T. Adams-Watters, Aug 29 2006

A084382 a(n) = n^3 + 6.

Original entry on oeis.org

6, 7, 14, 33, 70, 131, 222, 349, 518, 735, 1006, 1337, 1734, 2203, 2750, 3381, 4102, 4919, 5838, 6865, 8006, 9267, 10654, 12173, 13830, 15631, 17582, 19689, 21958, 24395, 27006, 29797, 32774, 35943, 39310, 42881, 46662, 50659, 54878, 59325, 64006, 68927, 74094
Offset: 0

Views

Author

Cino Hilliard, Jun 23 2003

Keywords

Crossrefs

Programs

Formula

a(0)=6, a(1)=7, a(2)=14, a(3)=33; for n >= 4, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Aug 08 2013
G.f.: (6 - 17*x + 22*x^2 - 5*x^3)/(1 - x)^4. - Vincenzo Librandi, Jun 10 2016
E.g.f.: (6 + x + 3*x^2 + x^3)*exp(x). - Elmo R. Oliveira, Apr 20 2025

Extensions

Offset 0 and a(0) = 6 from Vincenzo Librandi, Jun 10 2016

A034324 a(n) = (n-1)*(n-2)*(n-3) + n.

Original entry on oeis.org

1, 2, 3, 10, 29, 66, 127, 218, 345, 514, 731, 1002, 1333, 1730, 2199, 2746, 3377, 4098, 4915, 5834, 6861, 8002, 9263, 10650, 12169, 13826, 15627, 17578, 19685, 21954, 24391, 27002, 29793, 32770, 35939, 39306, 42877, 46658, 50655, 54874, 59321
Offset: 1

Views

Author

Laurence Michaels (guardian(AT)ntplx.net)

Keywords

Comments

(n*a(n+1)^3+1)/(n^3+1) is the smallest integer of the form (n*k^3+1)/(n^3+1). - Benoit Cloitre, May 02 2002

Crossrefs

Programs

Formula

a(n) = (n-2)^3 + 2 = A084380(n-2). - Philippe Deléham, Feb 23 2014
a(n+1) = A002061(n)*(n-2) + 3. - Philippe Deléham, Feb 23 2014
G.f.: x*(1-2*x+x^2+6*x^3)/(1-x)^4. - Philippe Deléham, Feb 23 2014
E.g.f.: 6 + (x^3-3*x^2+7*x-6)*exp(x). - Nikolaos Pantelidis, Feb 06 2023

Extensions

Extended and corrected by Erich Friedman

A274077 a(n) = n^3 + 4.

Original entry on oeis.org

4, 5, 12, 31, 68, 129, 220, 347, 516, 733, 1004, 1335, 1732, 2201, 2748, 3379, 4100, 4917, 5836, 6863, 8004, 9265, 10652, 12171, 13828, 15629, 17580, 19687, 21956, 24393, 27004, 29795, 32772, 35941, 39308, 42879, 46660, 50657, 54876, 59323, 64004, 68925
Offset: 0

Views

Author

Vincenzo Librandi, Jun 09 2016

Keywords

Crossrefs

Sequences of the type n^3+k: A000578 (k=0), A001093 (k=1), A084380 (k=2), A084378 (k=3), this sequence (k=4), A084381 (k=5), A084382 (k=6), A084377 (k=7).

Programs

  • Magma
    [n^3+4: n in [0..50]];
    
  • Maple
    seq(n^3+4, n=0..100); # Robert Israel, Jun 09 2016
  • Mathematica
    Table[n^3 + 4, {n, 0, 60}]
    Range[0,50]^3+4 (* or *) LinearRecurrence[{4,-6,4,-1},{4,5,12,31},50] (* Harvey P. Dale, Jul 01 2017 *)
  • PARI
    a(n) = n^3 + 4 \\ Felix Fröhlich, Jun 09 2016

Formula

O.g.f.: (4 - 11*x + 16*x^2 - 3*x^3)/(1 - x)^4.
E.g.f.: (x^3 + 3*x^2 + x + 4)*exp(x). - Robert Israel, Jun 09 2016
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
Showing 1-5 of 5 results.