A084639 Expansion of x*(1+2*x)/((1+x)*(1-x)*(1-2*x)).
0, 1, 4, 9, 20, 41, 84, 169, 340, 681, 1364, 2729, 5460, 10921, 21844, 43689, 87380, 174761, 349524, 699049, 1398100, 2796201, 5592404, 11184809, 22369620, 44739241, 89478484, 178956969, 357913940, 715827881, 1431655764, 2863311529, 5726623060, 11453246121
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Sela Fried, Economically solving the Tower of Hanoi puzzle.
- A. F. Horadam, Jacobsthal Representation Numbers, Fib Quart. 34, 40-54, 1996.
- Wolfdieter Lang, Notes on certain inhomogeneous three term recurrences.
- El-Mehdi Mehiri, Saad Mneimneh, and Hacène Belbachir, The Towers of Fibonacci, Lucas, Pell, and Jacobsthal, arXiv:2502.11045 [math.CO], 2025. See p. 12.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2).
Programs
-
Magma
[2^(n+2)/3+(-1)^n/6-3/2: n in [0..35]]; // Vincenzo Librandi, Aug 08 2011
-
Maple
a:=proc(n) (2^(n+3) + (-1)^n - 9)/6 end proc: [seq(a(n), n=0..33)]; # Wolfdieter Lang, Jan 24 2014
-
Mathematica
a[0] = 0; a[1] = 1; a[n_] := a[n] = a[n - 1] + 2 a[n - 2] + 3; Array[a, 32, 0] (* Or *) a[0] = 0; a[1] = 1; a[n_] := a[n] = 3 a[n - 1] - 2 a[n - 2] + (-1)^n; Array[a, 32, 0] CoefficientList[Series[x*(1+2*x)/((1+x)*(1-x)*(1-2*x)),{x,0,40}],x] (* or *) LinearRecurrence[{2,1,-2},{0,1,4},40] (* Vladimir Joseph Stephan Orlovsky, Jan 30 2012 *)
-
PARI
a(n)=2^(n+2)/3-if(n%2,5,4)/3 \\ Charles R Greathouse IV, Aug 08 2011
-
PARI
concat(0, Vec(x*(1+2*x)/((1+x)*(1-x)*(1-2*x)) + O(x^100))) \\ Altug Alkan, Dec 17 2015
-
Python
def A084639(n): return (4<
Chai Wah Wu, Apr 25 2025
Formula
G.f.: x*(1+2*x)/((1+x)*(1-x)*(1-2*x)).
E.g.f.: 4*exp(2*x)/3-3*exp(x)/2+exp(-x)/6.
a(n) = a(n-1)+2*a(n-2)+3, a(0)=0, a(1)=1.
a(n) = 2^(n+2)/3+(-1)^n/6-3/2.
a(n) = 2*a(n-1) + a(n-2) -2*a(n-3). - R. J. Mathar, Jun 28 2010
a(n) = a(n-1)+2*a(n-2)+3, n>1. - Gary Detlefs, Dec 19 2010
a(n) = 3*a(n-1)-2*a(n-2) +(-1)^n, n>1. - Gary Detlefs, Dec 19 2010
a(n) = a(n-2) + 2^n for n >= 2. - Kensuke Matsuoka, Aug 11 2020
Extensions
Replaced duplicate of a formula by another recurrence - R. J. Mathar, Jun 28 2010
Comments