cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085058 a(n) = A001511(n+1) + 1.

Original entry on oeis.org

2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 6, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 7, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 6, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 8, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 6, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 7, 2, 3, 2, 4, 2, 3, 2, 5, 2
Offset: 0

Views

Author

N. J. A. Sloane, Aug 11 2003

Keywords

Comments

Number of divisors of 2n+2 of the form 2^k. - Giovanni Teofilatto, Jul 25 2007
Number of steps for iteration of map x -> (3/2)*ceiling(x) to reach an integer when started at 2*n+1.
Also number of steps for iteration of map x -> (3/2)*floor(x) to reach an integer when started at 2*n+3. - Benoit Cloitre, Sep 27 2003
The first time that a(n) = e+1 is when n is of the form 2^e - 1. - Robert G. Wilson v, Sep 28 2003
Let 2^k(n) = largest power of 2 dividing tangent number A000182(n). Then a(n-1) = 2*n - k(n). - Yasutoshi Kohmoto, Dec 23 2006
a(n) is the number of integers generated by b(i+1) = (3+2n)*(b(i) + b(i-1))/2, following these two initial values, b(0) = b(1) = 1. Thereafter only non-integers are generated. - Richard R. Forberg, Nov 09 2014
a(n) is the 2-adic valuation of 4*n+4, which is equal to the number of trailing 1-bits of 4*n+3 in binary. - Ruud H.G. van Tol, Sep 11 2023

Crossrefs

Programs

  • Magma
    [Valuation(n+1, 2)+2: n in [0..100]]; // Vincenzo Librandi, Jan 16 2016
    
  • Maple
    f := x->(3/2)*ceil(x); g := proc(n) local t1,c; global f; t1 := f(n); c := 1; while not type(t1, 'integer') do c := c+1; t1 := f(t1); od; RETURN([c,t1]); end;
    a := n ->  A001511(n+1) + 1: A001511 := n -> padic[ordp](2*n, 2): seq(a(n), n=0..104); # Johannes W. Meijer, Dec 22 2012
  • Mathematica
    g = 3 Ceiling[ # ]/2 &; f[n_?OddQ] := Length @ NestWhileList[ g, g[n], !IntegerQ[ # ] & ]; Table[ f[n], {n, 1, 210, 2}]
  • PARI
    A085058(n)=if(n<0,0,c=2*n+7/2; x=0; while(frac(c)>0,c=3/2*floor(c); x++); x) \\ Benoit Cloitre, Sep 27 2003
    
  • PARI
    A085058(n)=if(n<0,0,c=(2*n+1)*3/2; x=1; while(frac(c)>0,c=3/2*ceil(c); x++); x) \\ Benoit Cloitre, Sep 27 2003
    
  • PARI
    a(n) = valuation(n+1,2)+2; \\ Michel Marcus, Jan 15 2016
    
  • Python
    def A085058(n): return (~(n+1) & n).bit_length()+2 # Chai Wah Wu, Apr 14 2023

Formula

a(n) = A007814(3^(n+1) - (-1)^(n+1)) = A007814(A105723(n+1)). - Reinhard Zumkeller, Apr 18 2005
a(n) = A001511(n+1) + 1 = A001511(2*n+2). - Ray Chandler, Jul 29 2007
a(n) = A007814(5^(n+1) - 1). - Ivan Neretin, Jan 15 2016
a(n) = A007814(4*(n+1)) = A007814(n+1) + 2. - Ruud H.G. van Tol, Sep 11 2023
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3. - Amiram Eldar, Sep 13 2024

Extensions

Edited by Franklin T. Adams-Watters, Dec 09 2013