A069215
Numbers n such that phi(n) = reversal(n).
Original entry on oeis.org
1, 21, 63, 270, 291, 2991, 6102, 46676013, 69460293, 2346534651, 6313047393, 23400000651, 80050617822, 234065340651, 234659934651, 2340000000651, 2530227348360, 2934000006591
Offset: 1
phi(291) = 192.
phi(6102) = 2016 = reversal(6102), so 6102 belongs to the sequence.
-
Do[If[EulerPhi[n] == FromDigits[Reverse[IntegerDigits[n]]], Print[n]], {n, 1, 10^5}]
-
for( n=1,1e9, A004086(n)==eulerphi(n) & print1(n","))
A086947
Numbers k such that R(k+9) = 3.
Original entry on oeis.org
21, 291, 2991, 29991, 299991, 2999991, 29999991, 299999991, 2999999991, 29999999991, 299999999991, 2999999999991, 29999999999991, 299999999999991, 2999999999999991, 29999999999999991, 299999999999999991, 2999999999999999991, 29999999999999999991, 299999999999999999991
Offset: 1
-
[3*(10^n-3): n in [1..25] ]; // Vincenzo Librandi, Aug 22 2011
-
Table[3*(10^n-3), {n, 17}]
Table[FromDigits[PadRight[{3},n,0]],{n,2,20}]-9 (* Harvey P. Dale, Nov 27 2012 *)
A072395
Numbers n such that reverse(phi(n)) = n.
Original entry on oeis.org
1, 21, 63, 291, 2991, 6102, 46676013, 69460293, 2346534651, 6313047393, 23400000651, 80050617822, 234065340651, 234659934651, 2340000000651, 2934000006591
Offset: 1
reverse(phi(6102)) = reverse(2016) = 6102, so 6102 is a term of the sequence.
A086948
a(n) = k where R(k+8) = 2.
Original entry on oeis.org
12, 192, 1992, 19992, 199992, 1999992, 19999992, 199999992, 1999999992, 19999999992, 199999999992, 1999999999992, 19999999999992, 199999999999992, 1999999999999992, 19999999999999992, 199999999999999992, 1999999999999999992, 19999999999999999992, 199999999999999999992
Offset: 1
A102278
Numbers k such that 78*10^k + 217 is prime.
Original entry on oeis.org
1, 2, 8, 10, 13, 21, 22, 36, 57, 80, 149, 484, 505, 642, 806, 974, 1674, 34177
Offset: 1
8 is in the sequence because 78.(8-3)(0).217 = 7800000217 is prime.
-
Do[If[PrimeQ[78*10^n + 217], Print[n]], {n, 8280}]
-
is(n)=ispseudoprime(78*10^n+217) \\ Charles R Greathouse IV, May 22 2017
Showing 1-5 of 5 results.
Comments