A085478 Triangle read by rows: T(n, k) = binomial(n + k, 2*k).
1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 10, 15, 7, 1, 1, 15, 35, 28, 9, 1, 1, 21, 70, 84, 45, 11, 1, 1, 28, 126, 210, 165, 66, 13, 1, 1, 36, 210, 462, 495, 286, 91, 15, 1, 1, 45, 330, 924, 1287, 1001, 455, 120, 17, 1, 1, 55, 495, 1716, 3003, 3003, 1820, 680, 153, 19, 1
Offset: 0
Examples
Triangle begins as: 1; 1 1; 1 3 1; 1 6 5 1; 1 10 15 7 1; 1 15 35 28 9 1; 1 21 70 84 45 11 1; 1 28 126 210 165 66 13 1; 1 36 210 462 495 286 91 15 1; 1 45 330 924 1287 1001 455 120 17 1; 1 55 495 1716 3003 3003 1820 680 153 19 1; ... From _Philippe Deléham_, Mar 26 2012: (Start) (0, 1, 0, 1, 0, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, 0, ...) begins: 1 0, 1 0, 1, 1 0, 1, 3, 1 0, 1, 6, 5, 1 0, 1, 10, 15, 7, 1 0, 1, 15, 35, 28, 9, 1 0, 1, 21, 70, 84, 45, 11, 1 0, 1, 28, 126, 210, 165, 66, 13, 1. (End)
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- J.-P. Allouche and M. Mendès France, Stern-Brocot polynomials and power series, arXiv preprint arXiv:1202.0211 [math.NT], 2012. - _N. J. A. Sloane_, May 10 2012
- Peter Bala, A 4-parameter family of embedded Riordan arrays
- E. Barcucci, A. Del Lungo, S. Fezzi, and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170, 1997, 211-217.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, J. Integer Sequ., Vol. 8 (2005), Article 05.4.5.
- Paul Barry, Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays, JIS 12 (2009) 09.8.6.
- Paul Barry, Notes on the Hankel transform of linear combinations of consecutive pairs of Catalan numbers, arXiv:2011.10827 [math.CO], 2020.
- Paul Barry, The second production matrix of a Riordan array, arXiv:2011.13985 [math.CO], 2020.
- Paul Barry and Aoife Hennessy, Notes on a Family of Riordan Arrays and Associated Integer Hankel Transforms , JIS 12 (2009) 09.5.3.
- Eduardo H. M. Brietzke, Recurrence Relations for Sums of Binomial Coefficients and Some Generalizations, Journal of Integer Sequences, Vol. 27 (2024), Article 24.3.4.
- E. Czabarka et al, Enumerations of peaks and valleys on non-decreasing Dyck paths, Disc. Math. 341 (2018) 2789-2807, Theorem 3.
- Emeric Deutsch and H. Prodinger, A bijection between directed column-convex polyominoes and ordered trees of height at most three, Theoretical Comp. Science, 307, 2003, 319-325.
- James East and Nicholas Ham, Lattice paths and submonoids of Z^2, arXiv:1811.05735 [math.CO], 2018.
- Wenjie Fang, Maximal number of subword occurrences in a word, arXiv:2406.02971 [math.CO], 2024.
- A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving full transformations, Semigroup Forum 72 (2006), 51-62. - _Abdullahi Umar_, Oct 02 2008
- Donatella Merlini and Renzo Sprugnoli, Arithmetic into geometric progressions through Riordan arrays, Discrete Mathematics 340.2 (2017): 160-174.
- Yidong Sun, Numerical Triangles and Several Classical Sequences, Fib. Quart. 43, no. 4, (2005) 359-370.
- Eric Weisstein's World of Mathematics, Morgan-Voyce Polynomials
Crossrefs
Programs
-
GAP
Flat(List([0..12], n-> List([0..n], k-> Binomial(n+k, 2*k) ))); # G. C. Greubel, Aug 01 2019
-
Haskell
a085478 n k = a085478_tabl !! n !! k a085478_row n = a085478_tabl !! n a085478_tabl = zipWith (zipWith a007318) a051162_tabl a025581_tabl -- Reinhard Zumkeller, Jun 22 2015
-
Magma
[Binomial(n+k, 2*k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2019
-
Maple
T := (n,k) -> binomial(n+k,2*k): seq(seq(T(n,k), k=0..n), n=0..11);
-
Mathematica
(* First program *) u[1, x_]:= 1; v[1, x_]:= 1; z = 13; u[n_, x_]:= u[n-1, x] + x*v[n-1, x]; v[n_, x_]:= u[n-1, x] + (x+1)*v[n-1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A085478 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A078812 *) (*Clark Kimberling, Feb 25 2012 *) (* Second program *) Table[Binomial[n + k, 2 k], {n, 0, 12}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 01 2019 *) CoefficientList[Table[Fibonacci[2 n + 1, Sqrt[x]], {n, 0, 10}], x] // Flatten (* Eric W. Weisstein, Jul 03 2023 *) Join[{{1}}, CoefficientList[Table[MinimalPolynomial[-4 Sin[Pi/(4 n + 2)]^2, x], {n, 20}], x]] (* Eric W. Weisstein, Jul 12 2023 *)
-
PARI
T(n,k) = binomial(n+k,n-k)
-
Sage
[[binomial(n+k,2*k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
Formula
T(n, k) = (n+k)!/((n-k)!*(2*k)!).
G.f.: (1-z)/((1-z)^2-tz). - Emeric Deutsch, May 31 2004
Row sums are A001519 (Fibonacci(2n+1)). Diagonal sums are A011782. Binomial transform of A026729 (product of lower triangular matrices). - Paul Barry, Jun 21 2004
T(n, 0) = 1, T(n, k) = 0 if n=0} T(n-1-j, k-1)*(j+1). T(0, 0) = 1, T(0, k) = 0 if k>0; T(n, k) = T(n-1, k-1) + T(n-1, k) + Sum_{j>=0} (-1)^j*T(n-1, k+j)*A000108(j). For the column k, g.f.: Sum_{n>=0} T(n, k)*x^n = (x^k) / (1-x)^(2*k+1). - Philippe Deléham, Feb 15 2004
Sum_{k=0..n} T(n,k)*x^(2*k) = A000012(n), A001519(n+1), A001653(n), A078922(n+1), A007805(n), A097835(n), A097315(n), A097838(n), A078988(n), A097841(n), A097727(n), A097843(n), A097730(n), A098244(n), A097733(n), A098247(n), A097736(n), A098250(n), A097739(n), A098253(n), A097742(n), A098256(n), A097767(n), A098259(n), A097770(n), A098262(n), A097773(n), A098292(n), A097776(n) for x=0,1,2,...,27,28 respectively. - Philippe Deléham, Dec 31 2007
T(2*n,n) = A005809(n). - Philippe Deléham, Sep 17 2009
A183160(n) = Sum_{k=0..n} T(n,k)*T(n,n-k). - Paul D. Hanna, Dec 27 2010
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k). - Philippe Deléham, Feb 06 2012
O.g.f. for column k: x^k/(1-x)^(2*k+1), k >= 0. [See the o.g.f. of the triangle above, and a comment on compositions. - Wolfdieter Lang, Jul 09 2012]
E.g.f.: (2/sqrt(x + 4))*sinh((1/2)*t*sqrt(x + 4))*cosh((1/2)*t*sqrt(x)) = t + (1 + x)*t^3/3! + (1 + 3*x + x^2)*t^5/5! + (1 + 6*x + 5*x^2 + x^3)*t^7/7! + .... Cf. A091042. - Peter Bala, Jul 29 2013
T(n, k) = A065941(n+3*k, 4*k) = A108299(n+3*k, 4*k) = A194005(n+3*k, 4*k). - Johannes W. Meijer, Sep 05 2013
From Peter Bala, Jun 26 2025: (Start)
The n-th row polynomial b(n, x) = (-1)^n * U(2*n, (i/2)*sqrt(x)), where U(n,x) is the n-th Chebyshev polynomial of the second kind.
b(n, x) = (-1)^n * Dir(n, -1 - x/2), where Dir(n, x) is the n-th row polynomial of the triangle A244419.
b(n, -1 - x) is the n-th row polynomial of A098493. (End)
Comments