cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A064856 Stirling transform of Catalan numbers: a(n) = Sum_{k=0..n} stirling2(n,k)*binomial(2*k,k)/(k+1).

Original entry on oeis.org

1, 1, 3, 12, 59, 338, 2185, 15613, 121553, 1020170, 9154963, 87276995, 879242215, 9319182044, 103537712361, 1201967382478, 14540040004755, 182840037042560, 2384985091689409, 32209645344213417, 449608555748234353, 6476887237235672388, 96156363230696213447
Offset: 0

Views

Author

Karol A. Penson, Oct 08 2001

Keywords

Crossrefs

Programs

  • Maple
    seq(add(Stirling2(n,k)*binomial(2*k,k)/(k+1),k=0..n), n=0..50); # Robert Israel, Sep 16 2016
  • Mathematica
    Table[Sum[StirlingS2[n,k] Binomial[2k,k]/(k+1),{k,0,n}],{n,0,20}] (* Harvey P. Dale, Nov 01 2011 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n, (2*m)!/(m!*(m+1)!)*x^m/prod(k=1, m, 1-k*x+x*O(x^n))), n)} /* Paul D. Hanna, Jul 20 2011 */

Formula

O.g.f.: Sum_{n>=1} C(2*n,n)/(n+1) * x^n / Product_{k=0..n} (1-k*x). - Paul D. Hanna, Jul 20 2011
E.g.f.: exp(2*exp(z)-2)*(BesselI(0, 2*exp(z)-2)-BesselI(1, 2*exp(z)-2)). Representation as a sum of an infinite series involving the confluent hypergeometric function 1F1, in Maple notation: a(n)=evalf(sum('k'^n*2^(2*'k')*GAMMA('k'+1/2)*evalf(hypergeom(['k'+1/2], ['k'+2], -4))/(sqrt(Pi)*'k'!*('k'+1)!), 'k'=0..infinity)), n=0, 1...
E.g.f.: hypergeom([1/2], [2], 4*(exp(x)-1)). - Vladeta Jovovic, Sep 11 2003

A201950 Central coefficients in Product_{k=0..n-1} (1 + k*x + x^2).

Original entry on oeis.org

1, 0, 2, 6, 28, 160, 1078, 8358, 73260, 716112, 7721844, 91039740, 1164932470, 16077368580, 238037983558, 3763371442530, 63276351409092, 1127406030014112, 21218146474666864, 420611921077524912, 8759617763834095796, 191208185756772875880
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2011

Keywords

Examples

			The coefficients in Product_{k=0..n-1} (1+k*x+x^2) form triangle A201949:
(1);
1,(0), 1;
1, 1,(2), 1, 1;
1, 3, 5, (6), 5, 3, 1;
1, 6, 15, 24, (28), 24, 15, 6, 1;
1, 10, 40, 90, 139, (160), 139, 90, 40, 10, 1;
1, 15, 91, 300, 629, 945, (1078), 945, 629, 300, 91, 15, 1;
1, 21, 182, 861, 2520, 5019, 7377, (8358), 7377, 5019, 2520, 861, 182, 21, 1;
1, 28, 330, 2156, 8729, 23520, 45030, 65016, (73260), 65016, 45030, 23520, 8729, 2156, 330, 28, 1; ...
where coefficients in parenthesis form the initial terms of this sequence.
		

Crossrefs

Cf. A086672, A324304 (variant).

Programs

  • Mathematica
    Flatten[{1,Table[Coefficient[Expand[Product[1 + k*x + x^2,{k,0,n-1}]],x^n],{n,1,20}]}] (* Vaclav Kotesovec, Feb 10 2015 *)
  • PARI
    {a(n) = polcoeff( prod(k=1,n,1+(k-1)*x+x^2+x*O(x^n)), n)}
    for(n=0,30, print1(a(n),", "))
    
  • PARI
    /* From series BesselI(0, 2*log(1 - x)), after Ilya Gutkovskiy */
    {a(n) = n!*polcoeff( sum(m=0,n, log(1 - x +x*O(x^n))^(2*m)/m!^2), n)}
    for(n=0,30, print1(a(n),", ")) \\ Paul D. Hanna, Feb 24 2019

Formula

Central terms of rows in irregular triangle A201949.
a(n) = (n-1)*a(n-1) + 2*A201952(n-1) for n>0. [corrected by Vaclav Kotesovec, May 04 2024]
E.g.f.: BesselI(0, 2*log(1 - x)). - Ilya Gutkovskiy, Feb 22 2019
E.g.f.: Sum_{n>=0} log(1 - x)^(2*n) / n!^2. [After Ilya Gutkovskiy - Paul D. Hanna, Feb 24 2019]

A306335 Expansion of e.g.f. BesselI(0,2*log(1 + x)) + BesselI(1,2*log(1 + x)).

Original entry on oeis.org

1, 1, 1, -1, 4, -21, 133, -981, 8244, -77694, 811194, -9292075, 115843000, -1561272571, 22618147199, -350481556959, 5784147674772, -101284047800632, 1875504207906184, -36616289396963678, 751702523788615816, -16187581390548113842, 364861626149143519378, -8590429045711448354359
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 08 2019

Keywords

Crossrefs

Programs

  • Maple
    E:= BesselI(0,2*log(1 + x)) + BesselI(1,2*log(1 + x)):
    S:= series(E,x,51):
    seq(coeff(S,x,j)*j!,j=0..50); # Robert Israel, Feb 10 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[BesselI[0, 2 Log[1 + x]] + BesselI[1, 2 Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS1[n, k] Binomial[k, Floor[k/2]], {k, 0, n}], {n, 0, 23}]
  • PARI
    a(n) = sum(k=0, n, stirling(n, k, 1)*binomial(k, k\2)); \\ Michel Marcus, Feb 09 2019

Formula

a(n) = Sum_{k=0..n} Stirling1(n,k)*A001405(k).

A317169 Expansion of e.g.f. BesselI(1,2*log(1 - x))/((1 - x)*log(1 - x)).

Original entry on oeis.org

1, 1, 3, 12, 61, 375, 2699, 22232, 206086, 2122110, 24023623, 296474178, 3960532707, 56931074109, 876098828097, 14369369855760, 250215898045984, 4609913757678432, 89586669708676510, 1831372328505086980, 39284382532454768754, 882269612910279500214, 20703128006754726971507
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 23 2018

Keywords

Crossrefs

Programs

  • Maple
    a:=series(BesselI(1,2*log(1 - x))/((1 - x)*log(1 - x)), x=0, 23): seq(n!*coeff(a, x, n), n=0..22); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[BesselI[1, 2 Log[1 - x]]/((1 - x) Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Abs[StirlingS1[n, k]] Hypergeometric2F1[(1 - k)/2, -k/2, 2, 4], {k, 0, n}], {n, 0, 22}]

Formula

a(n) = Sum_{k=0..n} |Stirling1(n,k)|*A001006(k).

A317170 Expansion of e.g.f. exp(exp(x) - 1)*BesselI(1,2*(exp(x) - 1))/(exp(x) - 1).

Original entry on oeis.org

1, 1, 3, 11, 48, 242, 1374, 8619, 58923, 434595, 3431263, 28817120, 256100717, 2397920319, 23567078396, 242343368931, 2600148486462, 29036252825090, 336754427112094, 4048299252733563, 50357053778129599, 647129716643654763, 8579133975080008700, 117178742009906802080, 1646975673395621229201
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 23 2018

Keywords

Comments

Stirling transform of the Motzkin numbers (A001006).

Crossrefs

Programs

  • Maple
    a:=series(exp(exp(x) - 1)*BesselI(1,2*(exp(x) - 1))/(exp(x) - 1), x=0, 26): seq(n!*coeff(a, x, n), n=0..24); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 24; CoefficientList[Series[Exp[Exp[x] - 1] BesselI[1, 2 (Exp[x] - 1)]/(Exp[x] - 1), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS2[n, k] Hypergeometric2F1[(1 - k)/2, -k/2, 2, 4], {k, 0, n}], {n, 0, 24}]

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k)*A001006(k).

A355290 a(n) = Sum_{k=0..n} (-1)^(n-k) * Stirling2(n,k) * Catalan(k).

Original entry on oeis.org

1, 1, 1, 0, -3, -2, 23, 17, -333, 86, 6941, -17025, -160267, 1082864, 2273807, -56742606, 152154285, 2293098332, -22007462809, -15179437171, 1671107690083, -10716783889040, -58404948615167, 1439391012463810, -6701658223127029, -88340107011433060
Offset: 0

Views

Author

Seiichi Manyama, Jun 27 2022

Keywords

Crossrefs

Programs

  • Maple
    A355290 := proc(n)
        add((-1)^(n-k)*stirling2(n,k)*A000108(k),k=0..n) ;
    end proc:
    seq(A355290(n),n=0..70) ; # R. J. Mathar, Mar 13 2023
  • PARI
    a(n) = sum(k=0, n,(-1)^(n-k)*stirling(n, k, 2)*binomial(2*k, k)/(k+1));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, binomial(2*k, k)/(k+1)*x^k/prod(j=1, k, 1+j*x)))

Formula

G.f.: Sum_{k>=0} Catalan(k) * x^k / Product_{j=1..k} (1 + j*x).

A085573 2*Sum(floor(C(n,w)/w),w=1..n/2-1)+floor(C(n,n/2)/(n/2)) if n is even, otherwise 2*Sum(floor(C(n,w)/w),w=1..(n-1)/2).

Original entry on oeis.org

2, 6, 11, 20, 32, 56, 97, 172, 298, 534, 952, 1736, 3150, 5824, 10724, 20042, 37308, 70304, 131971, 250308, 473020, 901872, 1713596, 3281122, 6262254, 12033330, 23053047, 44431308, 85393280, 165008114, 318009610, 615878180, 1189803926, 2308781688
Offset: 2

Views

Author

N. J. A. Sloane, Jul 07 2003

Keywords

Crossrefs

Programs

  • Maple
    b := binomial; f3 := n->if n mod 2 = 0 then 2*add(floor(b(n,w)/w),w=1..n/2-1)+floor(b(n,n/2)/(n/2)); else 2*add(floor(b(n,w)/w),w=1..(n-1)/2); fi;

A317310 Expansion of e.g.f. (1 + x)^2*BesselI(0,2*log(1 + x)).

Original entry on oeis.org

1, 2, 4, 6, 4, 0, -2, 14, -100, 792, -6996, 68508, -737882, 8676200, -110627142, 1520662410, -22418697948, 352885526856, -5907074659016, 104782694989616, -1963418893492364, 38753471698684512, -803656781974363412, 17469671114170029708, -397223288562294817330, 9429329994809282773300
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2019

Keywords

Crossrefs

Programs

  • Maple
    a:=series((1 + x)^2*BesselI(0,2*log(1 + x)), x=0, 26): seq(n!*coeff(a, x, n), n=0..25); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 25; CoefficientList[Series[(1 + x)^2 BesselI[0, 2 Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS1[n, k] Binomial[2 k, k], {k, 0, n}], {n, 0, 25}]
  • PARI
    my(x='x + O('x^30)); Vec(serlaplace((1 + x)^2*besseli(0,2*log(1 + x)))) \\ Michel Marcus, Mar 27 2019

Formula

a(n) = Sum_{k=0..n} Stirling1(n,k)*A000984(k).
Showing 1-8 of 8 results.