cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A206787 Sum of the odd squarefree divisors of n.

Original entry on oeis.org

1, 1, 4, 1, 6, 4, 8, 1, 4, 6, 12, 4, 14, 8, 24, 1, 18, 4, 20, 6, 32, 12, 24, 4, 6, 14, 4, 8, 30, 24, 32, 1, 48, 18, 48, 4, 38, 20, 56, 6, 42, 32, 44, 12, 24, 24, 48, 4, 8, 6, 72, 14, 54, 4, 72, 8, 80, 30, 60, 24, 62, 32, 32, 1, 84, 48, 68, 18, 96, 48, 72, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 12 2012

Keywords

Comments

a(A000079(n)) = 1; a(A057716(n)) > 1; a(A065119(n)) = 4; a(A086761(n)) = 6.
Inverse Mobius transform of 1, 0, 3, 0, 5, 0, 7, 0, 0, 0, 11, 0, 13, 0, 15, 0, 17, 0, 19, 0, 21, 0, 23, 0, 0, 0, 0, 0, 29... - R. J. Mathar, Jul 12 2012

Crossrefs

Inverse Möbius transform of the absolute values of A349343.

Programs

  • Haskell
    a206787 = sum . filter odd . a206778_row
    
  • Magma
    [&+[d:d in Divisors(m)|IsOdd(d) and IsSquarefree(d)]:m in [1..72]]; // Marius A. Burtea, Aug 14 2019
    
  • Maple
    seq(add(d*mobius(2*d)^2, d in divisors(n)), n=1 .. 80); # Ridouane Oudra, Aug 14 2019
  • Mathematica
    a[n_] := DivisorSum[n, #*Boole[OddQ[#] && SquareFreeQ[#]]&]; Array[a, 80] (* Jean-François Alcover, Dec 05 2015 *)
    f[2, e_] := 1; f[p_, e_] := p + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
  • PARI
    a(n) = sumdiv(n, d, d*(d % 2)*issquarefree(d)); \\ Michel Marcus, Sep 21 2014
    
  • Python
    from math import prod
    from sympy import primefactors
    def A206787(n): return prod(1+(p if p>2 else 0) for p in primefactors(n)) # Chai Wah Wu, Oct 10 2024

Formula

a(n) = Sum_{k = 1..A034444(n)} (A206778(n,k) mod 2) * A206778(n,k).
a(n) = Sum_{d|n} d*mu(2*d)^2, where mu is the Möbius function (A008683). - Ridouane Oudra, Aug 14 2019
Multiplicative with a(2^e) = 1, and a(p^e) = p + 1 for p > 2. - Amiram Eldar, Sep 18 2020
Sum_{k=1..n} a(k) ~ (1/3) * n^2. - Amiram Eldar, Nov 17 2022
Dirichlet g.f.: (zeta(s)*zeta(s-1)/zeta(2*s-2))*(2^s/(2^s+2)). - Amiram Eldar, Jan 03 2023
From Antti Karttunen, Nov 22 2023: (Start)
a(n) = A000203(A204455(n)) = A000593(A007947(n)) = A048250(n)/A010684(n-1). [From Sequence Machine]
a(n) = Sum_{d|n} abs(A349343(d)). [See R. J. Mathar's Jul 12 2012 comment above]
(End)
a(n) = Sum_{d divides n, d odd} d * mu(d)^2. - Peter Bala, Feb 01 2024

A086779 Numbers k such that k-th cyclotomic polynomial has exactly 7 nonzero terms.

Original entry on oeis.org

7, 14, 15, 28, 30, 45, 49, 56, 60, 75, 90, 98, 112, 120, 135, 150, 180, 196, 224, 225, 240, 270, 300, 343, 360, 375, 392, 405, 448, 450, 480, 540, 600, 675, 686, 720, 750, 784, 810, 896, 900, 960, 1080, 1125, 1200, 1215, 1350, 1372, 1440, 1500, 1568, 1620
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 03 2003

Keywords

Crossrefs

Cf. A086761.

Programs

  • Mathematica
    Select[Range[2000], Count[CoefficientList[Cyclotomic[#, x], x], 0] == EulerPhi[#] - 6 &] (* T. D. Noe, Feb 13 2012 *)
  • PARI
    isok(n) = {my(p = polcyclo(n)); #select(x->x, vector(1+poldegree(p), k, polcoeff(p, k-1))) == 7;} \\ Michel Marcus, Oct 26 2017

Formula

{n: A051664(n)=7}. - R. J. Mathar, Sep 15 2012

Extensions

Extended by T. D. Noe, Feb 13 2012

A280990 Least prime p such that n divides phi(p*n).

Original entry on oeis.org

2, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 31, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 31, 31, 2, 67, 17, 71, 3, 37, 19, 13, 5, 41, 7, 43, 11, 31, 23, 47, 3, 7, 5, 103, 13, 53, 3, 11, 7, 19, 29, 59, 31, 61, 31, 7, 2, 131, 67, 67, 17, 139, 71, 71, 3, 73, 37, 31, 19, 463
Offset: 1

Views

Author

Altug Alkan, Jan 12 2017

Keywords

Comments

n*a(n) are 2, 4, 9, 8, 25, 18, 49, 16, 27, 50, 121, 36, 169, 98, 465, 32, 289, ...
a(n) <= A034694(A007947(n)). If n is in A050384 then a(n) = A034694(n). - Robert Israel, Jan 12 2017

Examples

			a(15) = 31 because 15 does not divide phi(p*15) for p < 31 where p is prime and phi(31*15) = 2*4*30 is divisible by 15.
		

Crossrefs

Cf. A000079, A065119, A086761: for those n such that a(n)=2,3,5. - Michel Marcus, Jan 20 2017

Programs

  • Maple
    f:= proc(n) local p;
        p:= 2;
        while numtheory:-phi(p*n) mod n <> 0 do p:= nextprime(p) od:
        p
    end proc:
    map(f, [$1..100]); # Robert Israel, Jan 12 2017
  • Mathematica
    lpp[n_]:=Module[{p=2},While[Mod[EulerPhi[p*n],n]!=0,p=NextPrime[p]];p]; Array[lpp,80] (* Harvey P. Dale, Sep 26 2020 *)
  • PARI
    a(n)=my(k = 1); while (eulerphi(prime(k)*n) % n != 0, k++); prime(k);
    
  • PARI
    a(n)=my(t=n/gcd(eulerphi(n),n)); if(t==1, return(2)); forstep(p=if(t%2,2*t,t)+1, if(isprime(t), t, oo),lcm(t,2), if(isprime(p), return(p))); t \\ Charles R Greathouse IV, Jan 20 2017

Formula

a(p^k) = p for all primes p and k >= 1. - Robert Israel, Jan 12 2017
a(n) << n^5 by Xylouris' improvement to Linnik's theorem. - Charles R Greathouse IV, Jan 20 2017
Showing 1-3 of 3 results.