cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087508 Number of k such that mod(k*n,3) = 1 for 0 <= k <= n.

Original entry on oeis.org

0, 1, 1, 0, 2, 2, 0, 3, 3, 0, 4, 4, 0, 5, 5, 0, 6, 6, 0, 7, 7, 0, 8, 8, 0, 9, 9, 0, 10, 10, 0, 11, 11, 0, 12, 12, 0, 13, 13, 0, 14, 14, 0, 15, 15, 0, 16, 16, 0, 17, 17, 0, 18, 18, 0, 19, 19, 0, 20, 20, 0, 21, 21, 0, 22, 22, 0, 23, 23, 0, 24, 24, 0, 25, 25, 0, 26, 26, 0, 27, 27, 0, 28, 28, 0
Offset: 0

Views

Author

Paul Barry, Sep 11 2003

Keywords

Examples

			a(4) = 2 because k=1 and k=4 satisfy the equation.
		

Crossrefs

Programs

  • Magma
    I:=[0,1,1,0,2,2]; [n le 6 select I[n] else 2*Self(n-3) - Self(n-6): n in [1..100]]; // Vincenzo Librandi, Sep 22 2015
    
  • Mathematica
    LinearRecurrence[{0,0,2,0,0,-1}, {0,1,1,0,2,2}, 100] (* Vincenzo Librandi, Sep 22 2015 *)
    Table[PadRight[{0},3,n],{n,30}]//Flatten (* Harvey P. Dale, Jan 27 2021 *)
  • PARI
    concat(0,Vec((1+x)/(1-x^3)^2 +O(x^99))) \\ Charles R Greathouse IV, Oct 24 2014
    
  • PARI
    a(n) = sum(k=0, n, Mod(k*n, 3)==1); \\ Michel Marcus, Sep 27 2017
    
  • SageMath
    @CachedFunction
    def A087508(n):
        if (n<6): return (0,1,1,0,2,2)[n]
        else: return 2*A087508(n-3) - A087508(n-6)
    [A087508(n) for n in (0..100)] # G. C. Greubel, Sep 02 2022

Formula

a(n) = A000027(n) - A087509(n) - A087507(n).
a(n) = (2/3)*(floor(n/3)+1)*(1-cos(2*Pi*n/3)).
G.f.: x*(1 + x)/(1 - x^3)^2. - Arkadiusz Wesolowski, May 28 2013
a(n) = sin(n*Pi/3)*((4n+6)*sin(n*Pi/3)-sqrt(3)*cos(n*Pi))/9. - Wesley Ivan Hurt, Sep 24 2017