A157897
Triangle read by rows, T(n,k) = T(n-1,k) + T(n-2,k-1) + T(n-3,k-3) + delta(n,0)*delta(k,0), T(n,k<0) = T(n
1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 3, 1, 2, 0, 1, 4, 3, 3, 2, 0, 1, 5, 6, 5, 6, 0, 1, 1, 6, 10, 9, 12, 3, 3, 0, 1, 7, 15, 16, 21, 12, 6, 3, 0, 1, 8, 21, 27, 35, 30, 14, 12, 0, 1, 1, 9, 28, 43, 57, 61, 35, 30, 6, 4, 0, 1, 10, 36, 65, 91, 111, 81, 65, 30, 10, 4, 0, 1, 11, 45, 94, 142, 189, 169, 135, 90, 30, 20, 0, 1
Offset: 0
Examples
First few rows of the triangle are: 1; 1, 0; 1, 1, 0; 1, 2, 0, 1; 1, 3, 1, 2, 0; 1, 4, 3, 3, 2, 0; 1, 5, 6, 5, 6, 0, 1; 1, 6, 10, 9, 12, 3, 3, 0; 1, 7, 15, 16, 21, 12, 6, 3, 0; 1, 8, 21, 27, 35, 30, 14, 12, 0, 1; ... T(9,3) = 27 = T(8,3) + T(7,2) + T(6,0) = 16 + 10 + 1.
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- K. Edwards, A Pascal-like triangle related to the tribonacci numbers, Fib. Q., 46/47 (2008/2009), 18-25.
- Kenneth Edwards and Michael A. Allen, New combinatorial interpretations of the Fibonacci numbers squared, golden rectangle numbers, and Jacobsthal numbers using two types of tile, J. Int. Seq. 24 (2021) Article 21.3.8.
Crossrefs
Programs
-
Magma
function T(n,k) // T = A157897 if k lt 0 or k gt n then return 0; elif k eq 0 then return 1; else return T(n-1, k) + T(n-2, k-1) + T(n-3, k-3); end if; return T; end function; [T(n,k): k in [0..n], n in [0..14]]; // G. C. Greubel, Sep 01 2022
-
Mathematica
T[n_,k_]:= If[n
Michael A. Allen, Apr 28 2019 *) -
SageMath
def T(n,k): # T = A157897 if (k<0 or k>n): return 0 elif (k==0): return 1 else: return T(n-1, k) + T(n-2, k-1) + T(n-3, k-3) flatten([[T(n,k) for k in (0..n)] for n in (0..14)]) # G. C. Greubel, Sep 01 2022
Formula
T(n,k) = T(n-1,k) + T(n-2,k-1) + T(n-3,k-3) + delta(n,0)*delta(k,0), T(n,k<0) = T(n
Sum_{k=0..n} T(n, k) = A000073(n+2). - Reinhard Zumkeller, Jun 25 2009
From G. C. Greubel, Sep 01 2022: (Start)
T(n, k) = T(n-1, k) + T(n-2, k-1) + T(n-3, k-3), with T(n, 0) = 1.
T(n, n) = A079978(n).
T(n, n-1) = A087508(n), n >= 1.
T(n, 1) = A001477(n-1).
T(n, 2) = A161680(n-2).
Sum_{k=0..floor(n/2)} T(n-k, k) = A120415(n). (End)
Extensions
Name clarified by Michael A. Allen, Apr 28 2019
Definition improved by Michael A. Allen, Mar 11 2021
A087509 Number of k such that (k*n) == 2 (mod 3) for 0 <= k <= n.
0, 0, 1, 0, 1, 2, 0, 2, 3, 0, 3, 4, 0, 4, 5, 0, 5, 6, 0, 6, 7, 0, 7, 8, 0, 8, 9, 0, 9, 10, 0, 10, 11, 0, 11, 12, 0, 12, 13, 0, 13, 14, 0, 14, 15, 0, 15, 16, 0, 16, 17, 0, 17, 18, 0, 18, 19, 0, 19, 20, 0, 20, 21, 0, 21, 22, 0, 22, 23, 0, 23, 24, 0, 24, 25, 0, 25, 26, 0, 26, 27, 0, 27, 28, 0, 28
Offset: 0
Examples
a(8) = #{1,4,7} = 3.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,-1).
Programs
-
Mathematica
{#-1,1+#,0}[[Mod[#,3,1]]]/3&/@Range[0, 99] (* Federico Provvedi, Jun 15 2021 *) LinearRecurrence[{0,0,2,0,0,-1},{0,0,1,0,1,2},100] (* Harvey P. Dale, May 04 2023 *)
-
PARI
a(n) = sum(k=0, n, (k*n % 3)==2); \\ Michel Marcus, Sep 25 2017
Formula
a(n) = Sum_{k=0..n} [(k*n) == 2 (mod 3)];
a(n) = n - 2*(floor(n/3) + 1)*(1 - cos(2*Pi*n/3))/3 - floor(n/3)*(5 + 4*cos(2*Pi*n/3))/3.
G.f.: x^2*(x^2+1) / ((x-1)^2*(x^2+x+1)^2). - Colin Barker, Mar 31 2013
a(n) = 2*sin(n*Pi/3)*(sqrt(3)*cos(n*Pi) + 2*n*sin(n*Pi/3))/9. - Wesley Ivan Hurt, Sep 24 2017
A087507 #{0<=k<=n: k*n is divisible by 3}.
1, 1, 1, 4, 2, 2, 7, 3, 3, 10, 4, 4, 13, 5, 5, 16, 6, 6, 19, 7, 7, 22, 8, 8, 25, 9, 9, 28, 10, 10, 31, 11, 11, 34, 12, 12, 37, 13, 13, 40, 14, 14, 43, 15, 15, 46, 16, 16, 49, 17, 17, 52, 18, 18, 55, 19, 19, 58, 20, 20, 61, 21, 21, 64, 22, 22, 67, 23, 23, 70, 24, 24, 73, 25, 25, 76
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,-1).
Crossrefs
Cf. A016777 (trisection).
Programs
-
PARI
Vec((2*x^3+x^2+x+1)/((x-1)^2*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, May 02 2015
Formula
a(n) = sum{k=0..n, if (mod(kn, 3)=0, 1, 0) }.
a(n) = floor(n/3)(5/3+4/3cos(2Pi*/3))+1.
a(n) = 2*a(n-3)-a(n-6) for n>5. - Colin Barker, May 02 2015
G.f.: (2*x^3+x^2+x+1) / ((x-1)^2*(x^2+x+1)^2). - Colin Barker, May 02 2015
A115265 Correlation triangle for floor((n+3)/3).
1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 4, 4, 4, 4, 2, 3, 4, 5, 7, 5, 4, 3, 3, 5, 6, 8, 8, 6, 5, 3, 3, 6, 7, 9, 11, 9, 7, 6, 3, 4, 6, 8, 12, 12, 12, 12, 8, 6, 4, 4, 7, 9, 13, 15, 15, 15, 13, 9, 7, 4
Offset: 0
Comments
Examples
Triangle begins 1; 1,1; 1,2,1; 2,2,2,2; 2,3,3,3,2; 2,4,4,4,4,2; 3,4,5,7,5,4,3; 3,5,6,8,8,6,5,3; 3,6,7,9,11,9,7,6,3;
Programs
-
Mathematica
T[n_, k_] := Sum[Boole[j <= k] * Floor[(k - j + 3)/3] * Boole[j <= n-k] * Floor[(n - k - j + 3)/3], {j, 0, n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 15 2017 *)
Formula
G.f.: (1+x+x^2)(1+xy+x^2*y^2)/((1-x^3)^2*(1-x^3*y^3)^2*(1-x^2*y)).
T(n, k) = sum{j=0..n, [j<=k]*floor((k-j+3)/3)*[j<=n-k]*floor((n-k-j+3)/3)}.
A128615 Expansion of x/(1 + x + x^2 - x^3 - x^4 - x^5).
0, 1, -1, 0, 2, -2, 0, 3, -3, 0, 4, -4, 0, 5, -5, 0, 6, -6, 0, 7, -7, 0, 8, -8, 0, 9, -9, 0, 10, -10, 0, 11, -11, 0, 12, -12, 0, 13, -13, 0, 14, -14, 0, 15, -15, 0, 16, -16, 0, 17, -17, 0, 18, -18, 0, 19, -19
Offset: 0
Comments
Partial sums are 0,1,0,0,2,0,0,3,0,0,4,...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (-1,-1,1,1,1).
Programs
-
Magma
[Floor((n+3)/3)*((n+1) mod 3 -1): n in [0..40]]; // G. C. Greubel, Mar 26 2024
-
Mathematica
CoefficientList[Series[x/(1+x+x^2-x^3-x^4-x^5),{x,0,60}],x] (* or *) LinearRecurrence[{-1,-1,1,1,1},{0,1,-1,0,2},60] (* or *) Table[{0,n,-n},{n,20}]//Flatten (* Harvey P. Dale, Jul 15 2017 *) Table[Floor[(n+3)/3]*(Mod[n+1,3] -1), {n,0,40}] (* G. C. Greubel, Mar 26 2024 *)
-
SageMath
[((n+3)//3)*((n+1)%3 -1) for n in range(41)] # G. C. Greubel, Mar 26 2024
Formula
G.f.: x/((1-x)*(1+x+x^2)^2) = x*(1-x)/(1-x^3)^2.
a(n) = (1/9)*(1 - cos(2*Pi*n/3) + sqrt(3)*(2*n + 3)*sin(2*Pi*n/3)).
a(n) = floor((n+3)/3)*A049347(n+2). - G. C. Greubel, Mar 26 2024
Comments