cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A048891 Primes that are congruent to 1 mod n, where n is the index of the prime.

Original entry on oeis.org

2, 3, 11, 13, 37, 43, 1087, 64591, 64601, 64661, 1304707, 3523969, 3524249, 9558541, 189963073, 189963091, 189963847, 189968887, 189969319, 189969337, 1394194181, 1394194481, 1394194561, 1394197381, 1394199221, 1394199241, 3779851321, 3779851363, 3779856571, 10246935931, 10246936019, 10246936481, 75370121689, 75370121857, 75370122409, 75370125409, 75370126441
Offset: 1

Views

Author

Keywords

Comments

Based on problem by G. L. Honaker, Jr.
A subsequence of A073465. - Ivan N. Ianakiev, Aug 06 2019

Examples

			13 is the 6th prime and 13 == 1 mod 6.
		

Crossrefs

Programs

  • Mathematica
    f[p_,n_]:=Mod[p,n]==0; lst={};Do[p=Prime[n];If[f[p-1,n],AppendTo[lst,p]],{n,10!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 08 2009 *)
  • PARI
    lista(nn) = forprime(p=1, nn, if (Mod(p, primepi(p)) == 1, print1(p, ", "))); \\ Michel Marcus, Jan 08 2015; Aug 06 2019

Formula

A087611(a(n)) = 0. - Reinhard Zumkeller, Sep 11 2003
a(n) = A000040(A023143(n)). - Zak Seidov, Feb 19 2015

Extensions

More terms from Zak Seidov, Feb 19 2015
Terms a(33)-a(37) sorted into correct order by Giovanni Resta, Feb 23 2020

A096197 a(n) = (1+prime(n)) mod n.

Original entry on oeis.org

0, 0, 0, 0, 2, 2, 4, 4, 6, 0, 10, 2, 3, 2, 3, 6, 9, 8, 11, 12, 11, 14, 15, 18, 23, 24, 23, 24, 23, 24, 4, 4, 6, 4, 10, 8, 10, 12, 12, 14, 16, 14, 20, 18, 18, 16, 24, 32, 32, 30, 30, 32, 30, 36, 38, 40, 42, 40, 42, 42, 40, 46, 56, 56, 54, 54, 64, 66, 3, 0, 70, 0, 3, 4, 5, 4, 5, 8, 7, 10, 15
Offset: 1

Views

Author

Labos Elemer, Jul 26 2004

Keywords

Comments

Graph is similar to that of A004648.

Crossrefs

Programs

  • Magma
    [(NthPrime(n)+1) mod(n): n in [1..90]]; // Vincenzo Librandi, Sep 11 2014
    
  • Mathematica
    Table[Mod[Prime[n] + 1, n], {n, 100}] (* Vincenzo Librandi, Sep 11 2014 *)
  • PARI
    lista(nn) = {forprime(p=2, n, print1((p+1) % primepi(p), ", "););} \\ Michel Marcus, Sep 11 2014
Showing 1-2 of 2 results.