A087711 a(n) = smallest number k such that both k-n and k+n are primes.
2, 4, 5, 8, 7, 8, 11, 10, 11, 14, 13, 18, 17, 16, 17, 22, 21, 20, 23, 22, 23, 26, 25, 30, 29, 28, 33, 32, 31, 32, 37, 36, 35, 38, 37, 38, 43, 42, 41, 44, 43, 48, 47, 46, 57, 52, 51, 50, 53, 52, 53, 56, 55, 56, 59, 58, 75, 70, 69, 72, 67, 66, 65, 68, 67, 72, 71, 70, 71, 80, 81, 78
Offset: 0
Examples
n=10: k=13 because 13-10 and 13+10 are both prime and 13 is the smallest k such that k +/- 10 are both prime 4-1=3, prime, 4+1=5, prime; 5-2=3, 5+2=7; 8-3=5, 8+3=11; 9-4=5, 9+4=13, ...
Links
- Zak Seidov, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Magma
distance:=function(n); k:=n+2; while not IsPrime(k-n) or not IsPrime(k+n) do k:=k+1; end while; return k; end function; [ distance(n): n in [1..71] ]; /* Klaus Brockhaus, Apr 08 2007 */
-
Maple
Primes:= select(isprime,{seq(2*i+1,i=1..10^3)}): a[0]:= 2: for n from 1 do Q:= Primes intersect map(t -> t-2*n,Primes); if nops(Q) = 0 then break fi; a[n]:= min(Q) + n; od: seq(a[i],i=0..n-1); # Robert Israel, Sep 08 2014
-
Mathematica
s = ""; k = 0; For[i = 3, i < 22^2, If[PrimeQ[i - k] && PrimeQ[i + k], s = s <> ToString[i] <> ","; k++ ]; i++ ]; Print[s] (* Vladimir Joseph Stephan Orlovsky, Apr 03 2008 *) snk[n_]:=Module[{k=n+1},While[!PrimeQ[k+n]||!PrimeQ[k-n],k++];k]; Array[ snk,80,0] (* Harvey P. Dale, Dec 13 2020 *)
-
PARI
a(n)=my(k);while(!isprime(k-n) || !isprime(k+n),k++);return(k) \\ Edward Jiang, Sep 05 2014
Formula
a(n) = A020483(n)+n for n >= 1. - Robert Israel, Sep 08 2014
Extensions
Entries checked by Klaus Brockhaus, Apr 08 2007
Comments