A087799 a(n) = 10*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 10.
2, 10, 98, 970, 9602, 95050, 940898, 9313930, 92198402, 912670090, 9034502498, 89432354890, 885289046402, 8763458109130, 86749292044898, 858729462339850, 8500545331353602, 84146723851196170, 832966693180608098, 8245520207954884810
Offset: 0
Examples
a(4) = 9602 = 10*a(3) - a(2) = 10*970 - 98 = (5+sqrt(24))^4 + (5-sqrt(24))^4.
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Tanya Khovanova, Recursive Sequences
- Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)
- Index entries for linear recurrences with constant coefficients, signature (10,-1).
Programs
-
Magma
I:=[2,10]; [n le 2 select I[n] else 10*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Nov 07 2018
-
Mathematica
a[0] = 2; a[1] = 10; a[n_] := 10a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 17}] (* Robert G. Wilson v, Jan 30 2004 *) LinearRecurrence[{10,-1}, {2,10}, 30] (* G. C. Greubel, Nov 07 2018 *)
-
PARI
polsym(x^2 - 10*x + 1,20) \\ Charles R Greathouse IV, Jun 11 2011
-
PARI
{a(n) = 2 * real( (5 + 2 * quadgen(24))^n )}; /* Michael Somos, Feb 25 2014 */
-
Sage
[lucas_number2(n,10,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
Formula
a(n) = (5+sqrt(24))^n + (5-sqrt(24))^n.
G.f.: (2-10*x)/(1-10*x+x^2). - Philippe Deléham, Nov 02 2008
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n = 0..inf} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 5 - sqrt(24). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.09989 80642 72052 68138 ... = 2 + 1/(10 + 1/(98 + 1/(970 + ...))).
Also F(-alpha) = 0.89989 78538 78393 34715 ... has the continued fraction representation 1 - 1/(10 - 1/(98 - 1/(970 - ...))) and the simple continued fraction expansion 1/(1 + 1/((10-2) + 1/(1 + 1/((98-2) + 1/(1 + 1/((970-2) + 1/(1 + ...))))))).
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((10^2-4) + 1/(1 + 1/((98^2-4) + 1/(1 + 1/((970^2-4) + 1/(1 + ...))))))). Cf. A174503 and A005248. (End)
a(-n) = a(n). - Michael Somos, Feb 25 2014
From Peter Bala, Oct 16 2019: (Start)
8*Sum_{n >= 1} 1/(a(n) - 12/a(n)) = 1.
12*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 8/a(n)) = 1.
Series acceleration formulas for sums of reciprocals:
Sum_{n >= 1} 1/a(n) = 1/8 - 12*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 12)) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/12 + 8*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 8)).
Sum_{n >= 1} 1/a(n) = ( (theta_3(5-sqrt(24)))^2 - 1 )/4 and
Sum_{n >= 1} (-1)^(n+1)/a(n) = ( 1 - (theta_3(sqrt(24)-5))^2 )/4, where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). Cf. A153415 and A003499. (End)
E.g.f.: 2*exp(5*x)*cosh(2*sqrt(6)*x). - Stefano Spezia, Oct 18 2019
From Peter Bala, Mar 29 2022: (Start)
a(n) = 2*T(n,5), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind.
Extensions
More terms from Colin Barker, Feb 25 2014
Comments