A088311 Number of sets of lists with distinct list sizes, cf. A000262.
1, 1, 2, 12, 48, 360, 2880, 25200, 241920, 2903040, 36288000, 479001600, 7185024000, 112086374400, 1917922406400, 35307207936000, 669529276416000, 13516122267648000, 294509190463488000, 6568835422076928000, 155705728523304960000, 3882911605049917440000
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Laplace( (&*[1+x^j: j in [1..m+2]]) ))); // G. C. Greubel, Dec 14 2022 -
Maple
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add( `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n) end: a:= n-> n!*b(n): seq(a(n), n=0..25); # Alois P. Heinz, Jun 15 2018
-
Mathematica
nn = 19; Drop[ Range[0, nn]! CoefficientList[ Series[ Product[1 + x^i, {i,nn}], {x,0,nn}], x], 0] (* Geoffrey Critzer, Aug 05 2013; adapted to new offset by Vincenzo Librandi, Mar 28 2014 *) nmax = 20; CoefficientList[Series[Product[1/(1-x^(2*k-1)), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Aug 19 2015 *)
-
PARI
my(x='x+O('x^66)); Vec(serlaplace(eta(x^2)/eta(x))) \\ Joerg Arndt, Aug 06 2013
-
SageMath
# uses[EulerTransform from A166861] a = BinaryRecurrenceSequence(0, 1) # Peter Luschny's code of A000009 and A166861 b = EulerTransform(a) [factorial(n)*b(n) for n in range(41)] # G. C. Greubel, Dec 14 2022
Formula
E.g.f: Product_{m>0} (1+x^m).
a(n) = n! * A000009(n).
Extensions
Prepended a(0) = 1, Joerg Arndt, Aug 06 2013
Comments