cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A088375 Decimal expansion of a postulated upper estimate for the complex Grothendieck constant.

Original entry on oeis.org

1, 4, 0, 4, 5, 7, 5, 9, 3, 4, 6, 6, 3, 7, 4, 2, 0, 3, 2, 7, 7, 3, 9, 5, 8, 4, 7, 1, 5, 4, 8, 1, 4, 3, 7, 4, 3, 2, 3, 4, 6, 1, 1, 8, 3, 0, 6, 5, 2, 7, 1, 1, 9, 3, 6, 1, 1, 8, 0, 8, 9, 6, 1, 8, 5, 8, 7, 7, 1, 7, 1, 9, 4, 4, 8, 2, 5, 7, 7, 2, 2, 9, 8, 6, 5, 2, 8, 9, 8, 6, 2, 7, 0, 8, 7, 4, 4, 7, 8, 9, 3, 5
Offset: 1

Views

Author

Eric W. Weisstein, Sep 28 2003

Keywords

Examples

			1.404575934663742032773958471548143743234611830652711936118...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 3.11, p. 237.

Crossrefs

Programs

  • Maple
    Re(evalf(1/(2*EllipticK(I)-EllipticE(I)), 120)); # Vaclav Kotesovec, Apr 22 2015
  • Mathematica
    First[ RealDigits[ N[1/(2*EllipticK[-1] - EllipticE[-1] ), 120], 10, 102]](* Jean-François Alcover, Jun 07 2012, after Eric W. Weisstein *)
    RealDigits[(Sqrt[8 Pi] Gamma[3/4]^2)/(Pi^2 - 2 Gamma[3/4]^4), 10, 102][[1]] (* Jan Mangaldan, Nov 23 2020 *)
  • PARI
    magm(a, b)=my(eps=10^-(default(realprecision)-5), c); while(abs(a-b)>eps, my(z=sqrt((a-c)*(b-c))); [a, b, c] = [(a+b)/2, c+z, c-z]); (a+b)/2
    E(x)=Pi/2/agm(1,sqrt(1-x))*magm(1,1-x)
    K(x)=Pi/2/agm(1,sqrt(1-x))
    1/(2*K(-1)-E(-1)) \\ Charles R Greathouse IV, Aug 02 2018

Formula

Equals (sqrt(8*Pi)*Gamma(3/4)^2)/(Pi^2 - 2*Gamma(3/4)^4). - Jan Mangaldan, Nov 23 2020

A088373 Decimal expansion of a constant related to the postulated upper estimate for the complex Grothendieck constant.

Original entry on oeis.org

8, 1, 2, 5, 5, 7, 8, 5, 8, 8, 2, 1, 4, 7, 2, 4, 4, 2, 3, 1, 8, 5, 9, 3, 4, 9, 4, 6, 1, 2, 4, 7, 8, 0, 5, 2, 5, 4, 9, 2, 9, 5, 2, 9, 8, 8, 0, 4, 9, 7, 1, 8, 0, 8, 7, 1, 0, 6, 6, 7, 2, 5, 6, 8, 5, 1, 6, 7, 2, 0, 9, 8, 3, 1, 6, 2, 1, 7, 5, 7, 3, 6, 8, 1, 2, 0, 1, 3, 6, 0, 8, 5, 5, 7, 0, 1, 1, 2, 1, 3, 7, 8
Offset: 0

Views

Author

Eric W. Weisstein, Sep 28 2003

Keywords

Examples

			0.8125578588...
		

Crossrefs

Programs

  • Mathematica
    psi[x_] := (Sqrt[1 - x^2]*(EllipticE[-x^2/(1 - x^2)] - EllipticK[-x^2/(1 - x^2)]))/x; x0 = x /. FindRoot[psi[x] == 1/8*Pi*(x + 1), {x, 1/2}, WorkingPrecision -> 110]; RealDigits[x0, 10, 102] // First (* Jean-François Alcover, Feb 06 2013 *)

A088374 Decimal expansion of a postulated upper estimate for the complex Grothendieck constant.

Original entry on oeis.org

1, 4, 0, 4, 9, 0, 9, 1, 3, 2, 7, 3, 5, 7, 9, 5, 5, 3, 5, 5, 2, 5, 4, 4, 8, 1, 5, 0, 6, 1, 4, 6, 5, 4, 3, 4, 2, 7, 8, 1, 3, 4, 7, 6, 8, 0, 1, 8, 4, 1, 0, 8, 9, 5, 0, 5, 6, 8, 1, 1, 1, 6, 4, 1, 0, 6, 4, 9, 2, 8, 5, 4, 2, 9, 1, 8, 8, 7, 5, 4, 1, 5, 1, 1, 5, 2, 3, 4, 6, 0, 5, 2, 7, 2, 4, 6, 6, 8, 3, 7, 2, 6
Offset: 1

Views

Author

Eric W. Weisstein, Sep 28 2003

Keywords

Examples

			1.4049091327357955...
		

Crossrefs

Programs

  • Mathematica
    psi[x_] := (Sqrt[1 - x^2]*(EllipticE[-x^2/(1 - x^2)] - EllipticK[-x^2/(1 - x^2)]))/x; x0 = x /. FindRoot[psi[x] == 1/8*Pi*(x + 1), {x, 1/2}, WorkingPrecision -> 110]; RealDigits[8/(Pi*(x0 + 1)), 10, 102] // First (* Jean-François Alcover, Feb 06 2013 *)

A337607 Decimal expansion of Shanks's constant: the Hardy-Littlewood constant for A000068.

Original entry on oeis.org

6, 6, 9, 7, 4, 0, 9, 6, 9, 9, 3, 7, 0, 7, 1, 2, 2, 0, 5, 3, 8, 9, 2, 2, 4, 3, 1, 5, 7, 1, 7, 6, 4, 4, 0, 6, 6, 8, 8, 3, 7, 0, 1, 5, 7, 4, 3, 6, 4, 8, 2, 4, 1, 8, 5, 7, 3, 2, 9, 8, 5, 2, 2, 8, 4, 5, 2, 4, 6, 7, 9, 9, 9, 5, 6, 4, 5, 7, 1, 4, 7, 2, 7, 3, 1, 5, 0, 6, 2, 1, 0, 2, 1, 4, 3, 5, 9, 3, 7, 3, 5, 0, 2, 7, 3, 2
Offset: 0

Views

Author

Amiram Eldar, Sep 04 2020

Keywords

Comments

Named by Finch (2003) after the American mathematician Daniel Shanks (1917 - 1996).
Shanks (1961) conjectured that the number of primes of the form m^4 + 1 (A037896) with m <= x is asymptotic to c * li(x), where li(x) is the logarithmic integral function and c is this constant. He defined c as in the formula section and evaluated it by 0.66974.
The first 100 digits of this constant were calculated by Ettahri et al. (2019).

Examples

			0.669740969937071220538922431571764406688370157436482...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 90.

Crossrefs

Similar constants: A005597, A331941, A337606, A337608.

Programs

  • Mathematica
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    Zs[m_, n_, s_] := (w = 2; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = (s^w - s) * P[m, n, w]/w; sumz = sumz + difz; w++]; Exp[-sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Pi^2/(16*Log[1+Sqrt[2]]) * Zs[8, 1, 4]/Z[8, 1, 2]^2, digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)

Formula

Equals (Pi^2/(16*log(1+sqrt(2)))) * Product_{primes p == 1 (mod 8)} (1 - 4/p)*((p + 1)/(p - 1))^2 = (Pi/8) * A088367 * A334826.

Extensions

More digits from Vaclav Kotesovec, Jan 15 2021

A337608 Decimal expansion of Lal's constant: the Hardy-Littlewood constant for A217795.

Original entry on oeis.org

7, 9, 2, 2, 0, 8, 2, 3, 8, 1, 6, 7, 5, 4, 1, 6, 6, 8, 7, 7, 5, 4, 5, 5, 5, 6, 6, 5, 7, 9, 0, 2, 4, 1, 0, 1, 1, 2, 8, 9, 3, 2, 2, 5, 0, 9, 8, 6, 2, 2, 1, 1, 1, 7, 2, 2, 7, 9, 7, 3, 4, 5, 2, 5, 6, 9, 5, 1, 4, 1, 5, 4, 9, 4, 4, 1, 2, 4, 9, 0, 6, 6, 0, 2, 9, 5, 3, 8, 8, 3, 9, 8, 0, 2, 7, 5, 2, 9, 2, 7, 8, 7, 3, 9, 7, 3
Offset: 0

Views

Author

Amiram Eldar, Sep 04 2020

Keywords

Comments

Shanks (1967) conjectured that the number of primes of the form (m + 1)^4 + 1 such that (m - 1)^4 + 1 is also a prime (A217795 plus 1), with m <= x, is asymptotic to c * li_2(x), where li_2(x) = Integral_{t=2..n} (1/log(t)^2) dt, and c is this constant. He defined c as in the formula section, evaluated it by 0.79220 and named it after the mathematician Mohan Lal, who conjectured the asymptotic formula without evaluating this constant.
The first 100 digits of this constant were calculated by Ettahri et al. (2019).

Examples

			0.792208238167541668775455566579024101128932250986221...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, pp. 90-91.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; digits = 121;
    f[p_] := (p-8)*(p+1)^4/((p-1)^4*p);
    coefs = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, 1000}], x]];
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    m = 2; sump = 0; difp = 1; While[Abs[difp] > 10^(-digits - 5) || difp == 0, difp = coefs[[m]]*(P[8, 1, m] - 1/17^m); sump = sump + difp; m++];
    RealDigits[Chop[N[f[17] * Pi^4/(2^7 * Log[1+Sqrt[2]]^2) * Exp[sump], digits]], 10, digits - 1][[1]] (* Vaclav Kotesovec, Jan 16 2021 *)

Formula

Equals (Pi^4/(2^7 * log(1+sqrt(2))^2)) * Product_{primes p == 1 (mod 8)} (1 - 4/p)^2 * ((p + 1)/(p - 1))^4 * p*(p-8)/(p-4)^2 = (Pi^2/32) * A088367^2 * A334826^2 * A210630 = 2 * A337607^2 * A210630.

Extensions

More terms from Vaclav Kotesovec, Jan 16 2021

A348669 Decimal expansion of 2*sqrt(2)*log(1 + sqrt(2))/(3*Pi).

Original entry on oeis.org

2, 6, 4, 5, 0, 5, 0, 0, 7, 0, 0, 7, 8, 6, 9, 8, 4, 5, 5, 1, 5, 7, 7, 5, 2, 0, 1, 2, 9, 7, 2, 2, 5, 2, 6, 9, 3, 6, 3, 4, 0, 0, 0, 9, 0, 9, 6, 8, 0, 5, 1, 8, 3, 0, 5, 6, 2, 2, 4, 4, 3, 7, 2, 5, 8, 6, 4, 0, 2, 1, 3, 7, 3, 7, 6, 4, 3, 5, 6, 7, 9, 4, 6, 7, 5, 8, 9, 8, 3, 5, 6, 9, 7, 2, 3, 5, 1, 3, 7, 2, 5, 3, 4, 3, 4
Offset: 0

Views

Author

Amiram Eldar, Oct 29 2021

Keywords

Comments

The average length of a random line segment in a unit square defined as follows. A line that is making a random angle with a given edge of the square is chosen, and a random distance of this line from a given vertex of this edge is chosen uniformly between 0 and the distance to the opposite vertex in the square. The segment is then being chosen by picking at random two points between the two intersection points of the line with the perimeter of the square.

Examples

			0.26450500700786984551577520129722526936340009096805...
		

Crossrefs

Programs

  • Maple
    evalf(sqrt(8/9)*arcsinh(1)/Pi, 120);  # Alois P. Heinz, Oct 29 2021
  • Mathematica
    RealDigits[2*Sqrt[2]*Log[1 + Sqrt[2]]/(3*Pi), 10, 100][[1]]
  • PARI
    2*sqrt(2)*log(1 + sqrt(2))/(3*Pi) \\ Michel Marcus, Oct 29 2021
Showing 1-6 of 6 results.