A088538 Decimal expansion of 4/Pi.
1, 2, 7, 3, 2, 3, 9, 5, 4, 4, 7, 3, 5, 1, 6, 2, 6, 8, 6, 1, 5, 1, 0, 7, 0, 1, 0, 6, 9, 8, 0, 1, 1, 4, 8, 9, 6, 2, 7, 5, 6, 7, 7, 1, 6, 5, 9, 2, 3, 6, 5, 1, 5, 8, 9, 9, 8, 1, 3, 3, 8, 7, 5, 2, 4, 7, 1, 1, 7, 4, 3, 8, 1, 0, 7, 3, 8, 1, 2, 2, 8, 0, 7, 2, 0, 9, 1, 0, 4, 2, 2, 1, 3, 0, 0, 2, 4, 6, 8, 7, 6, 4, 8, 5, 8
Offset: 1
Examples
4/Pi = 1.2732395.... = 1/0.78539816...
References
- Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 195.
- H. E. Dudeney, 536 Puzzles & Curious Problems, Charles Scribner's Sons, New York, 1967, pp. 99, 300-301, #294.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, p. 86.
- G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, p. 105, eq. (7.5.1) for n=1.
- L. B. W. Jolley, Summation of Series, Dover (1961).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- J.-P. Allouche, On a formula of T. Rivoal, arXiv:1307.3906 [math.NT], 2013.
- Friedrich L. Bauer, Historische Notizen / Wallis-artige Kettenprodukte, Informatik Spektrum 31,4 (2008) 348-352.
- J. M. Borwein, A. Straub, J. Wan, and W. Zudilin, Densities of short uniform random walks, arXiv:1103.2995 [math.CA], 2011.
- Manuel Benito, Luis M. Navas and Juan Luis Varona, Möbius inversion from the point of view of arithmetical semigroup flows, Proceedings of the “Segundas Jornadas de Teoría de Números” (Madrid, 2007), 63-81
- R. J. Mathar, Chebyshev Series Expansion of Inverse Polynomials, arXiv:0403344 [math.CA], 2004-2005.
- Michael I. Shamos, A catalog of the real numbers, (2007). See p. 309.
- Eric Weisstein's World of Mathematics, Circle Line Picking.
- Eric Weisstein's World of Mathematics, Cycloid.
- Index entries for transcendental numbers.
Crossrefs
Programs
-
Mathematica
RealDigits[N[4/Pi, 6!]][[1]] (* Vladimir Joseph Stephan Orlovsky, Jun 18 2009 *)
-
PARI
4/Pi \\ Charles R Greathouse IV, Jun 21 2013
Formula
4/Pi = Product_(1-(-1)^((p-1)/2)/p) where p runs through the odd primes.
Arcsin x = (4/Pi) Sum_{n = 1, 3, 5, 7, ...} T_n(x)/n^2 (Chebyshev series of arcsin; App C of math.CA/0403344). - R. J. Mathar, Jun 26 2006
Equals 1 + Sum_{n >= 1} ((2n-3)!!/(2n)!!)^2. [Jolley eq 274]. - R. J. Mathar, Nov 03 2011
Equals binomial(1,1/2). - Bruno Berselli, May 17 2016
2*A060294 (twice Buffon's constant) = 1/Gamma(3/2)^2. - Wolfdieter Lang, Nov 14 2016
Equals 1 + Sum_{n>=0} (Catalan(n)/2^(2*n+1))^2, with Catalan(n) = A000108(n). This is the rewritten Jolley (274) series. See the above R. J. Mathar entry with (-1)!! := 1. - Ralf Steiner, Sep 18 2018
4/Pi = 1 + (1/4)*hypergeometric([1, 1/2, 1/2], [2, 2], 1) = hypergeometric([-1/2, -1/2], [1], 1). From the g.f. of Catalan^2 given in A001246. - Wolfdieter Lang, Sep 18 2018
Equals Product_{k>=1} (1 + 1/(4*k*(k+1))). - Amiram Eldar, Aug 05 2020
From Stefano Spezia, Oct 26 2024: (Start)
4/Pi = 1 + K_{n>=1} n^2/(2*n + 1), where K is the Gauss notation for an infinite continued fraction. In the expanded form, 4/Pi = 1 + 1^2/(3 + 2^2/(5 + 3^2/(7 + 4^2/(9 + 5^2/(11 + ...))))) (see Finch at p. 23).
4/Pi = Sum_{n>=0} tan(Pi/2^(n+2))/2^n (see Shamos). (End)
4/Pi = Sum_{n >= 0} (-1)^n * mu(2*n+1)/(2*n + 1), where mu(n) is the Möbius function A008683 (see, for example, Benito et al., p. 77). - Peter Bala, Jan 07 2025
Equals Integral_{x=0..1} (2*EllipticK(x))/Pi dx. - Kritsada Moomuang, Jun 04 2025
Comments