cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A088652 Triangle of primes arising in A088651. The n-th row of the triangle contains set of n primes of the form r*A088651(n)-1 for r = 1 to n. Sequence contains the triangle by rows.

Original entry on oeis.org

2, 2, 5, 3, 7, 11, 5, 11, 17, 23, 5, 11, 17, 23, 29, 154769, 309539, 464309, 619079, 773849, 928619, 2894219, 5788439, 8682659, 11576879, 14471099, 17365319, 20259539, 2894219, 5788439, 8682659, 11576879, 14471099, 17365319, 20259539
Offset: 1

Views

Author

Amarnath Murthy, Oct 29 2003

Keywords

Comments

Is the sequence finite?

Examples

			2
2 5
3 7 11
5 11 17 23
5 11 17 23 29
...
The fifth row contains primes 6r-1 for r = 1 to 5 since A088651(5)=6.
		

Extensions

Corrected and extended by Ray Chandler, Nov 01 2003

A088250 a(n) is the smallest number k such that r*k + 1 is prime for all r = 1 to n.

Original entry on oeis.org

1, 1, 2, 330, 10830, 25410, 512820, 512820, 12960606120, 434491727670, 1893245380950, 71023095613470, 878232256181280, 11429352906540438870
Offset: 1

Views

Author

Amarnath Murthy, Sep 26 2003

Keywords

Comments

Conjectures: (1) Sequence is infinite. (2) For every n there are infinitely many arithmetic progressions with n successive primes.
Both conjectures follow from Dickson's conjecture. [Charles R Greathouse IV, Mar 14 2011]

Examples

			a(11) = 1893245380950 because all eleven numbers 1*1893245380950 + 1, 2*1893245380950 + 1, 3*1893245380950 + 1, ..., 10*1893245380950 + 1 & 11*1893245380950 + 1 are prime and 1893245380950 is the smallest number with such property.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{k = If[n < 4, 1, 6], s}, s = k; While[! AllTrue[k Range[n] + 1, PrimeQ], k += s]; k]; Array[a, 8] (* Giovanni Resta, Mar 31 2017 *)

Extensions

Edited by Don Reble, Sep 29 2003
Entry revised by N. J. A. Sloane, Jan 05 2007
a(14) from Giovanni Resta, Mar 31 2017

A125838 a(n) is the smallest number m such that k*m - 1 for k=2,3,...,n is prime.

Original entry on oeis.org

2, 2, 2, 6, 120, 120, 2894220, 397073040, 1236161850, 764907546690, 8955490023480, 138393712627170, 8047290924923250
Offset: 2

Views

Author

Carlos Rivera, Jan 01 2007

Keywords

Examples

			a(7)=120 because 2*120-1, 3*120-1, 4*120-1, 5*120-1, 6*120-1 & 7*120-1 are prime and 120 is the smallest such number.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{k=2}, While[! AllTrue[k Range[2, n] - 1, PrimeQ], k += 2]; k]; a /@
    Range[2, 8] (* Giovanni Resta, Mar 29 2017 *)

Extensions

a(8) from Luke Pebody (luke.pebody(AT)gmail.com)
a(9)-a(10) from Vladimir Trushkov (vladimir(AT)trushkov.botik.ru)
a(5) corrected by and a(12)-a(14) from Giovanni Resta, Mar 29 2017

A125839 a(n) is the smallest number m such that k*m - 1 is prime for all k=3,4,...,n.

Original entry on oeis.org

1, 1, 6, 18, 120, 1260, 1485540, 28667100, 28667100, 842889105240, 2281585556250, 163881570370980, 45187548280664790
Offset: 3

Views

Author

Luke Pebody (luke.pebody(AT)gmail.com), Jan 02 2007

Keywords

Comments

For n > 6, 10 divides a(n).

Examples

			a(11)=28667100 because 3*28667100-1, 4*28667100-1, 5*28667100-1, 6*28667100-1, 7*28667100-1, 8*28667100-1, 9*28667100-1, 10*28667100-1 & 11*28667100-1 are prime and 28667100 is the smallest number with this property.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{k = If[n<5, 1, 6], s}, s = k;  While[! AllTrue[k Range[3, n] - 1, PrimeQ], k += s]; k]; a /@ Range[3, 9] (* Giovanni Resta, Mar 29 2017 *)

Extensions

a(12)-a(13) from Farideh Firoozbakht
a(14)-a(15) from Giovanni Resta, Mar 30 2017

A101779 a(n) = least k such that all of k, 2k+1, 3k+2, ..., nk+n-1 are primes, or 0 if no such k is found.

Original entry on oeis.org

2, 2, 3, 5, 5, 154769, 2894219, 2894219, 407874179, 214580145779, 9448481062019, 247236503934419, 2545206711847799, 18178612369988250179, 53792264108455702829
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Jan 13 2005

Keywords

Comments

a(10) > 3691000000, Robert G. Wilson v, Mar 23 2007
By definition the same as A088651(n)-1 if k exists. It is conjectured k always exists. - a(10)-a(15) from Jens Kruse Andersen, May 02 2008

Crossrefs

Programs

  • Mathematica
    f[1] = 2; f[n_] := f[n] = Block[{k = PrimePi@ f[n - 1], p, t = Table[i*p + (i - 1), {i, 2, n}]}, While[p = Prime@k; Union@PrimeQ@t != {True}, k++ ]; p]; Do[ Print[f@n // Timing], {n, 10}] (* Robert G. Wilson v, Mar 23 2007 *)

Extensions

a(10)-a(15) from Jens Kruse Andersen, May 02 2008

A164325 a(n) is the smallest number m such that (2k-1)m+1 is prime for all 0

Original entry on oeis.org

1, 2, 2, 6, 1170, 64590, 25153800, 25153800, 4747505070, 207187349040, 6703860240000, 26997529639080, 1760354281625940, 1760354281625940, 10718654377787155800
Offset: 1

Views

Author

Farideh Firoozbakht, Sep 15 2009

Keywords

Crossrefs

Extensions

a(5) corrected by Zak Seidov, Sep 16 2009
a(10) and a(11) from Zak Seidov, Sep 17 2009
a(12)=26997529639080 from Zak Seidov, Sep 25 2009
a(13)-a(15) from Giovanni Resta, Apr 01 2017

A202779 Least k such that x*k - 1 produces primes for x=1..n and composite for x=n+1.

Original entry on oeis.org

8, 3, 4, 1410, 6, 154770, 5246010, 2894220, 407874180, 214580145780, 9448481062020, 247236503934420, 2545206711847800, 18178612369988250180, 53792264108455702830
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jan 06 2012

Keywords

References

  • Wacław Sierpiński, Czym sie zajmuje teoria liczb. Warsaw: PW "Wiedza Powszechna", 1957, pp. 88-89.

Crossrefs

Another version of A088651.

Programs

  • Mathematica
    Table[k = 3; While[i = 1; While[i <= n && PrimeQ[i*k - 1], i++]; i <= n || PrimeQ[i*k - 1], k++]; k, {n, 8}]
Showing 1-7 of 7 results.