cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A088251 A088250(n) + 1.

Original entry on oeis.org

2, 2, 3, 331, 10831, 25411, 512821, 512821, 12960606121, 434491727671, 1893245380951, 71023095613471, 878232256181281
Offset: 1

Views

Author

Amarnath Murthy, Sep 26 2003

Keywords

Comments

The n-th row of the following triangle contains smallest set of n primes which form n successive terms of an arithmetic progression from the 2nd to (n+1)th term with the first term 1. 2 2 3 3 5 7 331 661 991 1321 ... Sequence contains the first column.
Conjecture: (1) Sequence is infinite. (2) For every n there are infinitely many arithmetic progressions with n successive primes.
Minimal primes p beginning a chain of n primes in an arithmetic progression of common difference p-1. - Robin Garcia, Jun 22 2013
Least prime p such that pi = i*p-i+1 is prime for i = 2 to i = n. - Robin Garcia, Jun 22 2013
a(n) is 1 mod 10 for n > 3 because if p is 3 mod 10, then all (2+5*t)*p -(1+5*t) for t=0,1,2,... are 5 mod 10; if p is 7 mod 10, all (4+5*t)*p -(3+5*t) are 5 mod 10 for t=0,1,2...; if p is 9 mod 10, all (3+5*t)*p - (2+5*t) are 5 mod 10 for t=0,1,2... - Robin Garcia, Jun 22 2013

Examples

			The n-th row of the following triangle contains smallest set of n primes which form n successive terms of an arithmetic progression from the 2nd to (n+1)-st term with the first term 1.
2
2 3
3 5 7
331 661 991 1321
...
Sequence contains the first column.
		

Crossrefs

Extensions

More terms from Don Reble and Farideh Firoozbakht, Feb 17 2004

A071576 a(n) = least k such that 2ik + 1 is prime for all 1 <= i <= n.

Original entry on oeis.org

1, 1, 1, 165, 5415, 12705, 256410, 256410, 6480303060, 217245863835, 946622690475, 35511547806735, 439116128090640, 5714676453270219435
Offset: 1

Views

Author

Benoit Cloitre, May 31 2002

Keywords

Crossrefs

Programs

  • Mathematica
    k = 1; Do[ While[p = Table[2*i*k + 1, {i, 1, n}]; Union[ PrimeQ[p]] != {True}, k++ ]; Print[k], {n, 1, 15}] (* Robert G. Wilson v *)
  • PARI
    for(n=1,6,s=1; while(sum(i=1,n,isprime(2*s*i+1))
    				

Extensions

Extended by Robert G. Wilson v, Jun 06 2002
a(9) from Ryan Propper, Jun 20 2005
a(10)-a(13) from Don Reble, Nov 05 2006
a(14) from Giovanni Resta, Apr 01 2017

A088651 a(n) = smallest number k such that rk-1 is prime for all r = 1 to n.

Original entry on oeis.org

3, 3, 4, 6, 6, 154770, 2894220, 2894220, 407874180, 214580145780, 9448481062020, 247236503934420, 2545206711847800, 18178612369988250180, 53792264108455702830
Offset: 1

Views

Author

Amarnath Murthy, Oct 29 2003

Keywords

Comments

Is the sequence finite?

Examples

			a(5)=6 because 1*6-1, 2*6-1, 3*6-1, 4*6-1, 5*6-1 are all prime.
a(11)=9448481062020 because all eleven numbers 1*9448481062020-1, 2*9448481062020-1,3*9448481062020-1,...,10*9448481062020-1 & 11*9448481062020-1 are prime and 9448481062020 is the smallest number with such property.
		

Crossrefs

Extensions

Corrected and extended by Ray Chandler, Nov 01 2003
More terms from Don Reble, Nov 23 2003
Entry revised by N. J. A. Sloane, Jan 05 2007
a(14)-a(15) from Jens Kruse Andersen, May 02 2008

A088252 n-th row of the following triangle contains smallest set of n primes which form n successive terms of an arithmetic progression from the 2nd to (n+1)th term with the first term 1. Sequence contains the leading diagonal.

Original entry on oeis.org

2, 3, 7, 1321, 54151, 152461, 3589741, 4102561, 116645455081, 4344917276701, 20825699190451, 852277147361641, 11417019330356641
Offset: 1

Views

Author

Amarnath Murthy, Sep 26 2003

Keywords

Comments

Conjectures: (1) Sequence is infinite. (2) For every n there are infinitely many arithmetic progressions with n successive primes.
A088252(n)=n*A088250(n)+1=n*A088251(n)-n+1. - Farideh Firoozbakht, Feb 21 2004

Examples

			2
2 3
3 5 7
331 661 991 1321
...
		

Crossrefs

Extensions

More terms from Farideh Firoozbakht, Feb 21 2004

A125838 a(n) is the smallest number m such that k*m - 1 for k=2,3,...,n is prime.

Original entry on oeis.org

2, 2, 2, 6, 120, 120, 2894220, 397073040, 1236161850, 764907546690, 8955490023480, 138393712627170, 8047290924923250
Offset: 2

Views

Author

Carlos Rivera, Jan 01 2007

Keywords

Examples

			a(7)=120 because 2*120-1, 3*120-1, 4*120-1, 5*120-1, 6*120-1 & 7*120-1 are prime and 120 is the smallest such number.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{k=2}, While[! AllTrue[k Range[2, n] - 1, PrimeQ], k += 2]; k]; a /@
    Range[2, 8] (* Giovanni Resta, Mar 29 2017 *)

Extensions

a(8) from Luke Pebody (luke.pebody(AT)gmail.com)
a(9)-a(10) from Vladimir Trushkov (vladimir(AT)trushkov.botik.ru)
a(5) corrected by and a(12)-a(14) from Giovanni Resta, Mar 29 2017

A125839 a(n) is the smallest number m such that k*m - 1 is prime for all k=3,4,...,n.

Original entry on oeis.org

1, 1, 6, 18, 120, 1260, 1485540, 28667100, 28667100, 842889105240, 2281585556250, 163881570370980, 45187548280664790
Offset: 3

Views

Author

Luke Pebody (luke.pebody(AT)gmail.com), Jan 02 2007

Keywords

Comments

For n > 6, 10 divides a(n).

Examples

			a(11)=28667100 because 3*28667100-1, 4*28667100-1, 5*28667100-1, 6*28667100-1, 7*28667100-1, 8*28667100-1, 9*28667100-1, 10*28667100-1 & 11*28667100-1 are prime and 28667100 is the smallest number with this property.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{k = If[n<5, 1, 6], s}, s = k;  While[! AllTrue[k Range[3, n] - 1, PrimeQ], k += s]; k]; a /@ Range[3, 9] (* Giovanni Resta, Mar 29 2017 *)

Extensions

a(12)-a(13) from Farideh Firoozbakht
a(14)-a(15) from Giovanni Resta, Mar 30 2017

A237189 Numbers k such that k+1, 2k+1, 3k+1, 4k+1 are all prime.

Original entry on oeis.org

330, 1530, 3060, 4260, 4950, 6840, 10830, 15390, 18120, 23010, 25410, 26040, 31770, 33300, 40110, 41490, 45060, 49830, 53880, 59340, 65850, 70140, 73770, 78540, 88740, 95460, 96930, 109470, 111720, 112620, 117720, 131310, 133200, 134730, 135300, 150150, 165900
Offset: 1

Views

Author

Alex Ratushnyak, Feb 04 2014

Keywords

Comments

A subsequence of A064238.
All terms are divisible by 30, and b(n)=a(n)/30 begins: 11, 51, 102, 142, 165, 228, 361, 513, 604, 767, 847, 868, 1059, 1110, 1337, 1383, 1502, 1661, 1796, 1978, 2195, ...

Crossrefs

Programs

  • Python
    import sympy
    from sympy import isprime
    for n in range(0,100000,2):
        if isprime(n+1) and isprime(2*n+1) and isprime(3*n+1) and isprime(4*n+1):
            print(str(n), end=',')

Formula

a(n) = 2*(A105653(n) + 1) = 2*A124409(n). - Hugo Pfoertner, May 03 2021

A164325 a(n) is the smallest number m such that (2k-1)m+1 is prime for all 0

Original entry on oeis.org

1, 2, 2, 6, 1170, 64590, 25153800, 25153800, 4747505070, 207187349040, 6703860240000, 26997529639080, 1760354281625940, 1760354281625940, 10718654377787155800
Offset: 1

Views

Author

Farideh Firoozbakht, Sep 15 2009

Keywords

Crossrefs

Extensions

a(5) corrected by Zak Seidov, Sep 16 2009
a(10) and a(11) from Zak Seidov, Sep 17 2009
a(12)=26997529639080 from Zak Seidov, Sep 25 2009
a(13)-a(15) from Giovanni Resta, Apr 01 2017

A237190 Numbers k such that k+1, 2k+1, 3k+1, 4k+1, 5k+1 are five primes.

Original entry on oeis.org

10830, 25410, 26040, 88740, 165900, 196560, 211050, 224400, 230280, 247710, 268500, 268920, 375480, 377490, 420330, 451410, 494340, 512820, 592620, 604170, 735750, 751290, 765780, 799170, 808080, 952680, 975660, 1053690, 1064190, 1132860, 1156170, 1532370, 1559580
Offset: 1

Views

Author

Alex Ratushnyak, Feb 04 2014

Keywords

Comments

A subsequence of A237189.
All terms are divisible by 30, and b(n) = a(n)/30 begins: 361, 847, 868, 2958, 5530, 6552, 7035, 7480, 7676, 8257, 8950, 8964, 12516, 12583, 14011, ...

Crossrefs

Programs

  • Mathematica
    Select[30*Range[52000],AllTrue[#*Range[5]+1,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 31 2017 *)
  • Python
    from sympy import isprime
    for n in range(2000000):
        if isprime(n+1) and isprime(2*n+1) and isprime(3*n+1) and isprime(4*n+1) and isprime(5*n+1):
            print(n, end=', ')

A372238 Least number m such that 9*k*m+1 is prime for k=1..n.

Original entry on oeis.org

2, 2, 4, 170, 9860, 23450, 56980, 56980, 6723767050, 48276858630, 77460393371130, 97581361797920, 97581361797920, 1269928100726715430
Offset: 1

Views

Author

Jean-Marc Rebert, Apr 23 2024

Keywords

Examples

			a(1) = 2, because 9*1*2 + 1 = 19 is prime and no lesser number has this property.
		

Crossrefs

Programs

  • Mathematica
    p[m_, n_] := AllTrue[Range[n], PrimeQ[9*#*m + 1] &];
    a[n_] := a[n] = Module[{m = 1}, While[! p[m, n], m++]; m]
    Table[a[n], {n, 1, 9}] (* Robert P. P. McKone, May 02 2024 *)
  • PARI
    is(n,m)=my(u=vector(n,k,9*k*m+1));for(i=1,n,if(!isprime(u[i]),return(0)));1
    a(n)=my(pas=1);if(n<15,if(n>2,pas=factorback(primes(primepi(n)));pas/=3;my(m=pas));forstep(m=pas,+oo,pas,if(is(n,m),return(m))))
    
  • PARI
    See PARI link

Formula

If A088250(n) is divisible by 9, then a(n) = A088250(n) / 9. - Jason Yuen, Apr 25 2024

Extensions

a(11)-a(13) from David A. Corneth, Apr 24 2024
a(14) from Jason Yuen, Apr 25 2024
Showing 1-10 of 12 results. Next