cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A181322 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of 2*n into powers of 2 less than or equal to 2^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 4, 1, 1, 2, 4, 6, 5, 1, 1, 2, 4, 6, 9, 6, 1, 1, 2, 4, 6, 10, 12, 7, 1, 1, 2, 4, 6, 10, 14, 16, 8, 1, 1, 2, 4, 6, 10, 14, 20, 20, 9, 1, 1, 2, 4, 6, 10, 14, 20, 26, 25, 10, 1, 1, 2, 4, 6, 10, 14, 20, 26, 35, 30, 11, 1, 1, 2, 4, 6, 10, 14, 20, 26, 36, 44, 36, 12, 1, 1, 2, 4, 6, 10, 14, 20, 26, 36, 46, 56, 42, 13, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 26 2011

Keywords

Comments

Column sequences converge towards A000123.

Examples

			A(3,2) = 6, because there are 6 partitions of 2*3=6 into powers of 2 less than or equal to 2^2=4: [4,2], [4,1,1], [2,2,2], [2,2,1,1], [2,1,1,1,1], [1,1,1,1,1,1].
Square array A(n,k) begins:
  1,  1,  1,  1,  1,  1,  ...
  1,  2,  2,  2,  2,  2,  ...
  1,  3,  4,  4,  4,  4,  ...
  1,  4,  6,  6,  6,  6,  ...
  1,  5,  9, 10, 10, 10,  ...
  1,  6, 12, 14, 14, 14,  ...
		

Crossrefs

Columns k=0-5 give: A000012, A000027(n+1), A002620(n+2), A008804, A088932, A088954.
Main diagonal gives A000123.
Cf. A145515.
See A262553 for another version of this array.
See A072170 for a related array (having the same limiting column).

Programs

  • Maple
    b:= proc(n, j) local nn, r;
          if n<0 then 0
        elif j=0 then 1
        elif j=1 then n+1
        elif n b(n/2^(k-1), k):
    seq(seq(A(n, d-n), n=0..d), d=0..13);
  • Mathematica
    b[n_, j_] := b[n, j] = Module[{nn, r}, Which[n<0, 0, j == 0, 1, j == 1, n+1, nJean-François Alcover, Jan 15 2014, translated from Maple *)
  • PARI
    A181322(n,k,r=1)={if(nA181322(n-1,k,0)+A181322(2*n,k-1,0),n-=r=1+n\1,(r-k)*binomial(r,k)*sum(i=0,min(k-1,k+n), binomial(k,i)/(r-k+i)*A181322(k-i+n,k,0) *(-1)^i))} \\ From Maple. - M. F. Hasler, Feb 19 2019

Formula

G.f. of column k: 1/(1-x) * 1/Product_{j=0..k-1} (1 - x^(2^j)).
A(n,k) = Sum_{i=0..k} A089177(n,i).
For n < 2^k, T(n,k) = A000123(k). T(n,0) = 1, T(n,1) = n+1. - M. F. Hasler, Feb 19 2019

A089177 Triangle read by rows: T(n,k) (n >= 0, 0 <= k <= 1+log_2(floor(n))) giving number of non-squashing partitions of n into k parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 4, 4, 1, 1, 5, 6, 2, 1, 6, 9, 4, 1, 7, 12, 6, 1, 8, 16, 10, 1, 1, 9, 20, 14, 2, 1, 10, 25, 20, 4, 1, 11, 30, 26, 6, 1, 12, 36, 35, 10, 1, 13, 42, 44, 14, 1, 14, 49, 56, 20, 1, 15, 56, 68, 26, 1, 16, 64, 84, 36, 1, 1, 17, 72, 100, 46, 2, 1, 18, 81, 120, 60, 4, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2003

Keywords

Comments

T(n,k) = A181322(n,k) - A181322(n,k-1) for n>0. - Alois P. Heinz, Jan 25 2014

Examples

			Triangle begins:
  1;
  1, 1;
  1, 2,  1;
  1, 3,  2;
  1, 4,  4,  1;
  1, 5,  6,  2;
  1, 6,  9,  4;
  1, 7, 12,  6;
  1, 8, 16, 10,  1;
		

Crossrefs

Cf. A078121, A089178. Columns give A002620, A008804, A088932, A088954. Row sums give A000123.

Programs

  • Maple
    T:= proc(n) option remember;
         `if`(n=0, 1, zip((x, y)-> x+y, [T(n-1)], [0, T(floor(n/2))], 0)[])
        end:
    seq(T(n), n=0..25);  # Alois P. Heinz, Apr 01 2012
  • Mathematica
    row[0] = {1}; row[1] = {1, 1}; row[n_] := row[n] = Plus @@ PadRight[ {row[n-1], Join[{0}, row[Floor[n/2]]]} ]; Table[row[n], {n, 0, 25}] // Flatten (* Jean-François Alcover, Jan 31 2014 *)

Formula

Row 0 = {1}, row 1 = {1 1}; for n >=2, row n = row n-1 + (row floor(n/2) shifted one place right).
G.f. for column k (k >= 2): x^(2^(k-2))/((1-x)*Product_{j=0..k-2} (1-x^(2^j))). [corrected by Jason Yuen, Jan 12 2025]
Conjecture: let R(n,x) be the n-th reversed row polynomial, then R(n,x) = Sum_{k=0..A000523(A053645(n)) + 1} T(A053645(n),k)*R(2^(A000523(n)-k),x) for n > 0, n != 2^m with R(0,x) = 1 where R(2^m,x) is the (m+1)-th row polynomial of A078121. - Mikhail Kurkov, Jun 28 2025

Extensions

More terms from Alford Arnold, May 22 2004

A088954 G.f.: 1/((1-x)^2*(1-x^2)*(1-x^4)*(1-x^8)*(1-x^16)).

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 20, 26, 36, 46, 60, 74, 94, 114, 140, 166, 202, 238, 284, 330, 390, 450, 524, 598, 692, 786, 900, 1014, 1154, 1294, 1460, 1626, 1827, 2028, 2264, 2500, 2780, 3060, 3384, 3708, 4088, 4468, 4904, 5340, 5844, 6348, 6920, 7492, 8148, 8804, 9544
Offset: 0

Views

Author

N. J. A. Sloane, Dec 02 2003

Keywords

Comments

a(n) is the number of partitions of 2*n into powers of 2 less than or equal to 2^5. First differs from A000123 at n=32. - Alois P. Heinz, Apr 02 2012

Crossrefs

See A000027, A002620, A008804, A088932, A000123 for similar sequences.
Column k=5 of A181322.

Programs

  • Maple
    f := proc(n,k) option remember; if k > n then RETURN(0); fi; if k= 0 then if n=0 then RETURN(1) else RETURN(0); fi; fi; if k = 1 then RETURN(1); fi; if n mod 2 = 1 then RETURN(f(n-1,k)); fi; f(n-1,k)+f(n/2,k-1); end; # present sequence is f(2m,6)
    GFF := k->x^(2^(k-2))/((1-x)*mul((1-x^(2^j)),j=0..k-2)); # present g.f. is GFF(6)/x^16
    a:= proc(n) local m, r; m:= iquo(n, 16, 'r'); r:= r+1; [1, 2, 4, 6, 10, 14, 20, 26, 36, 46, 60, 74, 94, 114, 140, 166][r] +(((((128/5*m +8*(15+r))*m +(228 +[0, 32, 68, 104, 144, 184, 228, 272, 320, 368, 420, 472, 528, 584, 644, 704][r]))*m +(172 +[0, 43, 98, 153, 223, 293, 378, 463, 566, 669, 790, 911, 1053, 1195, 1358, 1521][r]))*m +(247/5 +[0, 22, 55, 88, 138, 188, 255, 322, 415, 508, 627, 746, 900, 1054, 1243, 1432][r]))*m)/3 end: seq(a(n), n=0..60); # Alois P. Heinz, Apr 17 2009
  • Mathematica
    CoefficientList[Series[1/((1-x)^2(1-x^2)(1-x^4)(1-x^8)(1-x^16)),{x,0,70}],x] (* or *) LinearRecurrence[{2,0,-2,2,-2,0,2,0,-2,0,2,-2,2,0,-2,2,-2,0,2,-2,2,0,-2,0,2,0,-2,2,-2,0,2,-1},{1,2,4,6,10,14,20,26,36,46,60,74,94,114,140,166,202,238,284,330,390,450,524,598,692,786,900,1014,1154,1294,1460,1626},70](* Harvey P. Dale, Feb 12 2013 *)

Formula

a(0)=1, a(1)=2, a(2)=4, a(3)=6, a(4)=10, a(5)=14, a(6)=20, a(7)=26, a(8)=36, a(9)=46, a(10)=60, a(11)=74, a(12)=94, a(13)=114, a(14)=140, a(15)=166, a(16)=202, a(17)=238, a(18)=284, a(19)=330, a(20)=390, a(21)=450, a(22)=524, a(23)=598, a(24)=692, a(25)=786, a(26)=900, a(27)=1014, a(28)=1154, a(29)=1294, a(30)=1460, a(31)=1626, a(n)=2*a(n-1)-2*a(n-3)+ 2*a(n-4)- 2*a(n-5)+ 2*a(n-7)-2*a(n-9)+2*a(n-11)-2*a(n-12)+2*a(n-13)-2*a(n-15)+2*a(n-16)-2*a(n-17)+ 2*a(n-19)- 2*a(n-20)+ 2*a(n-21)-2*a(n-23)+2*a(n-25)-2*a(n-27)+2*a(n-28)-2*a(n-29)+ 2*a(n-31)-a(n-32). - Harvey P. Dale, Feb 12 2013

A008643 Molien series for group of 4 X 4 upper triangular matrices over GF(2).

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 20, 20, 26, 26, 35, 35, 44, 44, 56, 56, 68, 68, 84, 84, 100, 100, 120, 120, 140, 140, 165, 165, 190, 190, 220, 220, 250, 250, 286, 286, 322, 322, 364, 364, 406, 406, 455, 455, 504, 504, 560, 560, 616, 616, 680, 680, 744
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 2, 4 and 8. - Ilya Gutkovskiy, May 24 2017

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.

Crossrefs

Cf. A008804, A088932 (partial sums).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 65); Coefficients(R!( (&*[1/(1-x^(2^j)): j in [0..3]]) )); // G. C. Greubel, Feb 01 2020
    
  • Maple
    a:= proc(n) local m, r; m := iquo(n, 8, 'r'); r:= iquo(r,2)+1; ([11, 17, 26, 35][r]+ (9+ 3*r+ 4*m) *m) *m/3+ [1, 2, 4, 6][r] end: seq(a(n), n=0..100);  # Alois P. Heinz, Oct 06 2008
  • Mathematica
    CoefficientList[1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8)) + O[x]^65, x] (* Jean-François Alcover, May 29 2015 *)
    LinearRecurrence[{1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1}, {1,1,2,2,4,4,6,6,10,10,14,14,20,20,26}, 65] (* Ray Chandler, Jul 15 2015 *)
  • PARI
    my(x='x+O('x^65)); Vec(1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8))) \\ G. C. Greubel, Feb 01 2020
    
  • PARI
    my(b(m) = (m^3 + 12*m^2 + (44 - 3*(m%2))*m + 48)\48); vector(59,n,b((n-1)\2)) \\ Hoang Xuan Thanh, Aug 14 2025
    
  • Sage
    def A077952_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8)) ).list()
    A077952_list(65) # G. C. Greubel, Feb 01 2020

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8)).
a(n) = floor(((n+14)*(3*(n+1)*(-1)^n + 2*n^2 + 17*n + 57) + 24*(floor(n/2) + 1)*(-1)^floor(n/2))/768). - Tani Akinari, Jun 16 2013
a(n) ~ 1/384*n^3. - Ralf Stephan, Apr 29 2014
Showing 1-4 of 4 results.