A372082 Primes p such that the 10's complement A089186(p) and the concatenations of p and A089186(p) and of A089186(p) and p are all prime.
3, 7, 17, 29, 71, 83, 281, 719, 1637, 2309, 3701, 4493, 5507, 6299, 7691, 8363, 9029, 11003, 13163, 17117, 18371, 20807, 31181, 31793, 32693, 32843, 33617, 33893, 34211, 34673, 37277, 38453, 49409, 50591, 61547, 62723, 65327, 65789, 66107, 66383, 67157, 67307, 68207, 68819, 79193, 81629, 82883
Offset: 1
Examples
a(3) = 17 is a term because 17 is a prime, its 10's complement 83 is a prime, and the concatenations 1783 and 8317 are primes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local d,c; if not isprime(n) then return false fi; d:= 10^(1+ilog10(n)); c:= d-n; isprime(c) and isprime(c*d+n) and isprime(n*10^(1+ilog10(c))+c) end proc: select(filter, [seq(i,i=3..10000,2)]);
Comments