cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090772 Numbers that are congruent to {2, 8} mod 10.

Original entry on oeis.org

2, 8, 12, 18, 22, 28, 32, 38, 42, 48, 52, 58, 62, 68, 72, 78, 82, 88, 92, 98, 102, 108, 112, 118, 122, 128, 132, 138, 142, 148, 152, 158, 162, 168, 172, 178, 182, 188, 192, 198, 202, 208, 212, 218, 222, 228, 232, 238, 242, 248, 252, 258, 262, 268, 272, 278, 282
Offset: 1

Views

Author

Giovanni Teofilatto, Feb 07 2004

Keywords

Comments

Their square ends in the digit 4. - Kausthub Gudipati, Sep 08 2011
10*a(n) = 20, 80, 120, 180, 220, ... are the only numbers written in French ending in "vingt(s)". - Paul Curtz, Aug 02 2018

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(2*x*(1+3*x+x^2)/((1+x)*(1-x)^2))); // G. C. Greubel, Aug 08 2018
  • Mathematica
    Union@ Flatten@ Outer[Plus, {2, 8}, 10 Range[0, 28]] (* or *)
    CoefficientList[Series[2 (1 + 3x + x^2)/((1 + x) (1 - x)^2), {x, 0, 57}], x] (* Michael De Vlieger, Aug 02 2018 *)
    LinearRecurrence[{1, 1, -1}, {2, 8, 12}, 61] (* Robert G. Wilson v, Aug 08 2018 *)
  • PARI
    is(n) = #setintersect([2, 8], [n%10]) > 0 \\ Felix Fröhlich, Aug 02 2018
    
  • PARI
    Vec(2*x*(1+3*x+x^2)/((1+x)*(1-x)^2) + O(x^60)) \\ Felix Fröhlich, Aug 02 2018
    

Formula

a(n) = 2 * A047209(n).
a(n) = 10*n - a(n-1) - 10 (with a(1)=2). - Vincenzo Librandi, Nov 16 2010
G.f.: 2*x*(1+3*x+x^2)/((1+x)*(1-x)^2). - Bruno Berselli, Sep 08 2011
a(1) = 2. For n > 1, a(n) = a(n-1) + A226294(n). - Felix Fröhlich, Aug 02 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(1+2/sqrt(5))*Pi/10. - Amiram Eldar, Dec 28 2021
E.g.f.: 2 + ((10*x - 5)*exp(x) + exp(-x))/2. - David Lovler, Sep 03 2022
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = tan(3*Pi/10) (A019952).
Product_{n>=1} (1 + (-1)^n/a(n)) = cosec(2*Pi/5)/2 (= A179290 / 2). (End)

Extensions

Edited and extended by Ray Chandler, Feb 10 2004