A054841 If n = 2^a * 3^b * 5^c * 7^d * ... then a(n) = a + 10 * b + 100 * c + 1000 * d + ... .
0, 1, 10, 2, 100, 11, 1000, 3, 20, 101, 10000, 12, 100000, 1001, 110, 4, 1000000, 21, 10000000, 102, 1010, 10001, 100000000, 13, 200, 100001, 30, 1002, 1000000000, 111, 10000000000, 5, 10010, 1000001, 1100, 22, 100000000000, 10000001, 100010
Offset: 1
Examples
a(25) = 200 because 25 = 5^2 * 3^0 * 2^0. a(1024) = 10 = a(3), because 1024 = 2^10; but this two-digit multiplicity overflows into the 10^1 position, which encodes for powers of three.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000 (n=1..1023 from Michael De Vlieger)
- Evans A Criswell, A Sequence Puzzle (Posted to rec.puzzles Jan 01 1997)
- Walter Nissen, Exponential Prime Power Representation, sci.math newsgroup, May 23 1995.
Crossrefs
Programs
-
Haskell
a054841 1 = 0 a054841 n = sum $ zipWith (*) (map ((10 ^) . subtract 1 . a049084) $ a027748_row n) (map fromIntegral $ a124010_row n) -- Reinhard Zumkeller, Aug 03 2015
-
Maple
A:= n -> add(t[2]*10^(numtheory:-pi(t[1])-1),t= ifactors(n)[2]); seq(A(n), n=1..1000); # Robert Israel, Jul 24 2014
-
Mathematica
a054841[n_Integer] := Catch[FromDigits[IntegerDigits[Apply[Plus, Which[n == 0, Throw["undefined"], n == 1, 0, Max[Last /@ FactorInteger @ n] > 9, Throw["overflow"], True, Power[10, PrimePi[Abs[#]] - 1]] & /@ Flatten[ConstantArray @@@ FactorInteger[n]]]]]] (* Michael De Vlieger, Jul 24 2014 *)
-
PARI
A054841(n)=sum(i=1,#n=factor(n)~,10^primepi(n[1,i])*n[2,i])/10 \\ M. F. Hasler, Nov 16 2008
-
Python
from sympy import factorint, primepi def a(n): return sum(e*10**(primepi(p)-1) for p, e in factorint(n).items()) print([a(n) for n in range(1, 41)]) # Michael S. Branicky, Mar 17 2024
Formula
a(m*n) = a(m) + a(n) for all m,n > 0. A007953(a(n))=A001222(n) for all n such that A051903(n) < 10. - M. F. Hasler, Nov 16 2008
a(n) = sum(10^(A049084(A027748(k))-1) * A124010(k): k = 1..A001221(n)). - Reinhard Zumkeller, Aug 03 2015
a(A054842(n)) = n for all n >= 0. - Antti Karttunen, Aug 29 2016
a(n) = Sum_{i>0} e_i*10^(i-1) when n = Product_{i>0} prime(i)^e_i. - M. F. Hasler, Mar 14 2018
Comments