cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A371278 Numbers k > 1 such that k / A054841(k) is an integer.

Original entry on oeis.org

2, 4, 12, 16, 144, 192, 256, 1728, 3888, 4320, 6480, 7200, 11520, 13122, 14580, 15360, 20736, 36864, 49152, 65536, 107520, 344064, 384000, 589824, 691200, 1244160, 1259712, 1327104, 2211840, 2304960, 2963520, 2985984, 3932160, 3981312, 4478976, 4500000
Offset: 1

Views

Author

Ctibor O. Zizka, Mar 17 2024

Keywords

Examples

			k = 144: A054841(144) = 24 because 144 = 3^2 * 2^4, 144/A054841(144) = 144/24 = 6, thus 144 is a term.
		

Crossrefs

Cf. A054841, A001146 (a subsequence).

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n]}, Divisible[n, Total[10^(PrimePi[f[[;; , 1]]] - 1) * f[[;; , 2]]]]]; q[1] = False; Select[Range[10^5], q] (* Amiram Eldar, Mar 17 2024 *)
  • Python
    from sympy import factorint, primepi
    def ok(n): return n > 1 and n%sum(e*10**(primepi(p)-1) for p, e in factorint(n).items()) == 0
    print([k for k in range(10**4) if ok(k)]) # Michael S. Branicky, Mar 17 2024

Extensions

More terms from Michel Marcus, Mar 17 2024

A002110 Primorial numbers (first definition): product of first n primes. Sometimes written prime(n)#.

Original entry on oeis.org

1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810, 304250263527210, 13082761331670030, 614889782588491410, 32589158477190044730, 1922760350154212639070, 117288381359406970983270, 7858321551080267055879090
Offset: 0

Views

Author

Keywords

Comments

See A034386 for the second definition of primorial numbers: product of primes in the range 2 to n.
a(n) is the least number N with n distinct prime factors (i.e., omega(N) = n, cf. A001221). - Lekraj Beedassy, Feb 15 2002
Phi(n)/n is a new minimum for each primorial. - Robert G. Wilson v, Jan 10 2004
Smallest number stroked off n times after the n-th sifting process in an Eratosthenes sieve. - Lekraj Beedassy, Mar 31 2005
Apparently each term is a new minimum for phi(x)*sigma(x)/x^2. 6/Pi^2 < sigma(x)*phi(x)/x^2 < 1 for n > 1. - Jud McCranie, Jun 11 2005
Let f be a multiplicative function with f(p) > f(p^k) > 1 (p prime, k > 1), f(p) > f(q) > 1 (p, q prime, p < q). Then the record maxima of f occur at n# for n >= 1. Similarly, if 0 < f(p) < f(p^k) < 1 (p prime, k > 1), 0 < f(p) < f(q) < 1 (p, q prime, p < q), then the record minima of f occur at n# for n >= 1. - David W. Wilson, Oct 23 2006
Wolfe and Hirshberg give ?, ?, ?, ?, ?, 30030, ?, ... as a puzzle.
Records in number of distinct prime divisors. - Artur Jasinski, Apr 06 2008
For n >= 2, the digital roots of a(n) are multiples of 3. - Parthasarathy Nambi, Aug 19 2009 [with corrections by Zak Seidov, Aug 30 2015]
Denominators of the sum of the ratios of consecutive primes (see A094661). - Vladimir Joseph Stephan Orlovsky, Oct 24 2009
Where record values occur in A001221. - Melinda Trang (mewithlinda(AT)yahoo.com), Apr 15 2010
It can be proved that there are at least T prime numbers less than N, where the recursive function T is: T = N - N*Sum_{i = 0..T(sqrt(N))} A005867(i)/A002110(i). This can show for example that at least 0.16*N numbers are primes less than N for 29^2 > N > 23^2. - Ben Paul Thurston, Aug 23 2010
The above comment from Parthasarathy Nambi follows from the observation that digit summing produces a congruent number mod 9, so the digital root of any multiple of 3 is a multiple of 3. prime(n)# is divisible by 3 for n >= 2. - Christian Schulz, Oct 30 2013
The peaks (i.e., local maximums) in a graph of the number of repetitions (i.e., the tally of values) vs. value, as generated by taking the differences of all distinct pairs of odd prime numbers within a contiguous range occur at regular periodic intervals given by the primorial numbers 6 and greater. Larger primorials yield larger (relative) peaks, however the range must be >50% larger than the primorial to be easily observed. Secondary peaks occur at intervals of those "near-primorials" divisible by 6 (e.g., 42). See A259629. Also, periodicity at intervals of 6 and 30 can be observed in the local peaks of all possible sums of two, three or more distinct odd primes within modest contiguous ranges starting from p(2) = 3. - Richard R. Forberg, Jul 01 2015
If a number k and a(n) are coprime and k < (prime(n+1))^b < a(n), where b is an integer, then k has fewer than b prime factors, counting multiplicity (i.e., bigomega(k) < b, cf. A001222). - Isaac Saffold, Dec 03 2017
If n > 0, then a(n) has 2^n unitary divisors (A034444), and a(n) is a record; i.e., if k < a(n) then k has fewer unitary divisors than a(n) has. - Clark Kimberling, Jun 26 2018
Unitary superabundant numbers: numbers k with a record value of the unitary abundancy index, A034448(k)/k > A034448(m)/m for all m < k. - Amiram Eldar, Apr 20 2019
Psi(n)/n is a new maximum for each primorial (psi = A001615) [proof in link: Patrick Sole and Michel Planat, proposition 1 page 2]; compare with comment 2004: Phi(n)/n is a new minimum for each primorial. - Bernard Schott, May 21 2020
The term "primorial" was coined by Harvey Dubner (1987). - Amiram Eldar, Apr 16 2021
a(n)^(1/n) is approximately (n log n)/e. - Charles R Greathouse IV, Jan 03 2023
Subsequence of A267124. - Frank M Jackson, Apr 14 2023

Examples

			a(9) = 23# = 2*3*5*7*11*13*17*19*23 = 223092870 divides the difference 5283234035979900 in the arithmetic progression of 26 primes A204189. - _Jonathan Sondow_, Jan 15 2012
		

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 49.
  • P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 4.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 114.
  • D. Wolfe and S. Hirshberg, Underspecified puzzles, in Tribute to A Mathemagician, Peters, 2005, pp. 73-74.

Crossrefs

A034386 gives the second version of the primorial numbers.
Subsequence of A005117 and of A064807. Apart from the first term, a subsequence of A083207.
Cf. A001615, A002182, A002201, A003418, A005235, A006862, A034444 (unitary divisors), A034448, A034387, A033188, A035345, A035346, A036691 (compositorial numbers), A049345 (primorial base representation), A057588, A060735 (and integer multiples), A061742 (squares), A072938, A079266, A087315, A094348, A106037, A121572, A053589, A064648, A132120, A260188.
Cf. A061720 (first differences), A143293 (partial sums).
Cf. also A276085, A276086.
The following fractions are all related to each other: Sum 1/n: A001008/A002805, Sum 1/prime(n): A024451/A002110 and A106830/A034386, Sum 1/nonprime(n): A282511/A282512, Sum 1/composite(n): A250133/A296358.

Programs

  • Haskell
    a002110 n = product $ take n a000040_list
    a002110_list = scanl (*) 1 a000040_list
    -- Reinhard Zumkeller, Feb 19 2012, May 03 2011
    
  • Magma
    [1] cat [&*[NthPrime(i): i in [1..n]]: n in [1..20]]; // Bruno Berselli, Oct 24 2012
    
  • Magma
    [1] cat [&*PrimesUpTo(p): p in PrimesUpTo(60)]; // Bruno Berselli, Feb 08 2015
    
  • Maple
    A002110 := n -> mul(ithprime(i),i=1..n);
  • Mathematica
    FoldList[Times, 1, Prime[Range[20]]]
    primorial[n_] := Product[Prime[i], {i, n}]; Array[primorial,20] (* José María Grau Ribas, Feb 15 2010 *)
    Join[{1}, Denominator[Accumulate[1/Prime[Range[20]]]]] (* Harvey P. Dale, Apr 11 2012 *)
  • PARI
    a(n)=prod(i=1,n, prime(i)) \\ Washington Bomfim, Sep 23 2008
    
  • PARI
    p=1; for (n=0, 100, if (n, p*=prime(n)); write("b002110.txt", n, " ", p) )  \\ Harry J. Smith, Nov 13 2009
    
  • PARI
    a(n) = factorback(primes(n)) \\ David A. Corneth, May 06 2018
    
  • Python
    from sympy import primorial
    def a(n): return 1 if n < 1 else primorial(n)
    [a(n) for n in range(51)]  # Indranil Ghosh, Mar 29 2017
    
  • Sage
    [sloane.A002110(n) for n in (1..20)] # Giuseppe Coppoletta, Dec 05 2014
    
  • Scheme
    ; with memoization-macro definec
    (definec (A002110 n) (if (zero? n) 1 (* (A000040 n) (A002110 (- n 1))))) ;; Antti Karttunen, Aug 30 2016

Formula

Asymptotic expression for a(n): exp((1 + o(1)) * n * log(n)) where o(1) is the "little o" notation. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 08 2001
a(n) = A054842(A002275(n)).
Binomial transform = A136104: (1, 3, 11, 55, 375, 3731, ...). Equals binomial transform of A121572: (1, 1, 3, 17, 119, 1509, ...). - Gary W. Adamson, Dec 14 2007
a(0) = 1, a(n+1) = prime(n)*a(n). - Juri-Stepan Gerasimov, Oct 15 2010
a(n) = Product_{i=1..n} A000040(i). - Jonathan Vos Post, Jul 17 2008
a(A051838(n)) = A116536(n) * A007504(A051838(n)). - Reinhard Zumkeller, Oct 03 2011
A000005(a(n)) = 2^n. - Carlos Eduardo Olivieri, Jun 16 2015
a(n) = A035345(n) - A005235(n) for n > 0. - Jonathan Sondow, Dec 02 2015
For all n >= 0, a(n) = A276085(A000040(n+1)), a(n+1) = A276086(A143293(n)). - Antti Karttunen, Aug 30 2016
A054841(a(n)) = A002275(n). - Michael De Vlieger, Aug 31 2016
a(n) = A270592(2*n+2) - A270592(2*n+1) if 0 <= n <= 4 (conjectured for all n by Alon Kellner). - Jonathan Sondow, Mar 25 2018
Sum_{n>=1} 1/a(n) = A064648. - Amiram Eldar, Oct 16 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = A132120. - Amiram Eldar, Apr 12 2021
Theta being Chebyshev's theta function, a(0) = exp(theta(1)), and for n > 0, a(n) = exp(theta(m)) for A000040(n) <= m < A000040(n+1) where m is an integer. - Miles Englezou, Nov 26 2024

A019565 The squarefree numbers ordered lexicographically by their prime factorization (with factors written in decreasing order). a(n) = Product_{k in I} prime(k+1), where I is the set of indices of nonzero binary digits in n = Sum_{k in I} 2^k.

Original entry on oeis.org

1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 42, 35, 70, 105, 210, 11, 22, 33, 66, 55, 110, 165, 330, 77, 154, 231, 462, 385, 770, 1155, 2310, 13, 26, 39, 78, 65, 130, 195, 390, 91, 182, 273, 546, 455, 910, 1365, 2730, 143, 286, 429, 858, 715, 1430, 2145, 4290
Offset: 0

Views

Author

Keywords

Comments

A permutation of the squarefree numbers A005117. The missing positive numbers are in A013929. - Alois P. Heinz, Sep 06 2014
From Antti Karttunen, Apr 18 & 19 2017: (Start)
Because a(n) toggles the parity of n there are neither fixed points nor any cycles of odd length.
Conjecture: there are no finite cycles of any length. My grounds for this conjecture: any finite cycle in this sequence, if such cycles exist at all, must have at least one member that occurs somewhere in A285319, the terms that seem already to be quite rare. Moreover, any such a number n should satisfy in addition to A019565(n) < n also that A048675^{k}(n) is squarefree, not just for k=0, 1 but for all k >= 0. As there is on average a probability of only 6/(Pi^2) = 0.6079... that any further term encountered on the trajectory of A048675 is squarefree, the total chance that all of them would be squarefree (which is required from the elements of A019565-cycles) is soon minuscule, especially as A048675 is not very tightly bounded (many trajectories seem to skyrocket, at least initially). I am also assuming that usually there is no significant correlation between the binary expansions of n and A048675(n) (apart from their least significant bits), or, for that matter, between their prime factorizations.
See also the slightly stronger conjecture in A285320, which implies that there would neither be any two-way infinite cycles.
If either of the conjectures is false (there are cycles), then certainly neither sequence A285332 nor its inverse A285331 can be a permutation of natural numbers. (End)
The conjecture made in A087207 (see also A288569) implies the two conjectures mentioned above. A further constraint for cycles is that in any A019565-trajectory which starts from a squarefree number (A005117), every other term is of the form 4k+2, while every other term is of the form 6k+3. - Antti Karttunen, Jun 18 2017
The sequence satisfies the exponential function identity, a(x + y) = a(x) * a(y), whenever x and y do not have a 1-bit in the same position, i.e., when A004198(x,y) = 0. See also A283475. - Antti Karttunen, Oct 31 2019
The above identity becomes unconditional if binary exclusive OR, A003987(.,.), is substituted for addition, and A059897(.,.), a multiplicative equivalent of A003987, is substituted for multiplication. This gives us a(A003987(x,y)) = A059897(a(x), a(y)). - Peter Munn, Nov 18 2019
Also the Heinz number of the binary indices of n, where the Heinz number of a sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k), and a number's binary indices (A048793) are the positions of 1's in its reversed binary expansion. - Gus Wiseman, Dec 28 2022

Examples

			5 = 2^2+2^0, e_1 = 2, e_2 = 0, prime(2+1) = prime(3) = 5, prime(0+1) = prime(1) = 2, so a(5) = 5*2 = 10.
From _Philippe Deléham_, Jun 03 2015: (Start)
This sequence regarded as a triangle withs rows of lengths 1, 1, 2, 4, 8, 16, ...:
   1;
   2;
   3,  6;
   5, 10, 15, 30;
   7, 14, 21, 42, 35,  70, 105, 210;
  11, 22, 33, 66, 55, 110, 165, 330, 77, 154, 231, 462, 385, 770, 1155, 2310;
  ...
(End)
From _Peter Munn_, Jun 14 2020: (Start)
The initial terms are shown below, equated with the product of their prime factors to exhibit the lexicographic order. We start with 1, since 1 is factored as the empty product and the empty list is first in lexicographic order.
   n     a(n)
   0     1 = .
   1     2 = 2.
   2     3 = 3.
   3     6 = 3*2.
   4     5 = 5.
   5    10 = 5*2.
   6    15 = 5*3.
   7    30 = 5*3*2.
   8     7 = 7.
   9    14 = 7*2.
  10    21 = 7*3.
  11    42 = 7*3*2.
  12    35 = 7*5.
(End)
		

Crossrefs

Row 1 of A285321.
Equivalent sequences for k-th-power-free numbers: A101278 (k=3), A101942 (k=4), A101943 (k=5), A054842 (k=10).
Cf. A109162 (iterates).
Cf. also A048675 (a left inverse), A087207, A097248, A260443, A054841.
Cf. A285315 (numbers for which a(n) < n), A285316 (for which a(n) > n).
Cf. A276076, A276086 (analogous sequences for factorial and primorial bases), A334110 (terms squared).
For partial sums see A288570.
A003961, A003987, A004198, A059897, A089913, A331590, A334747 are used to express relationships between sequence terms.
Column 1 of A329332.
Even bisection (which contains the odd terms): A332382.
A160102 composed with A052330, and subsequence of the latter.
Related to A000079 via A225546, to A057335 via A122111, to A008578 via A336322.
Least prime index of a(n) is A001511.
Greatest prime index of a(n) is A029837 or A070939.
Taking prime indices gives A048793, reverse A272020, row sums A029931.
A112798 lists prime indices, length A001222, sum A056239.

Programs

  • Haskell
    a019565 n = product $ zipWith (^) a000040_list (a030308_row n)
    -- Reinhard Zumkeller, Apr 27 2013
    
  • Maple
    a:= proc(n) local i, m, r; m:=n; r:=1;
          for i while m>0 do if irem(m,2,'m')=1
            then r:=r*ithprime(i) fi od; r
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Sep 06 2014
  • Mathematica
    Do[m=1;o=1;k1=k;While[ k1>0, k2=Mod[k1, 2];If[k2\[Equal]1, m=m*Prime[o]];k1=(k1-k2)/ 2;o=o+1];Print[m], {k, 0, 55}] (* Lei Zhou, Feb 15 2005 *)
    Table[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2], {n, 0, 55}]  (* Michael De Vlieger, Aug 27 2016 *)
    b[0] := {1}; b[n_] := Flatten[{ b[n - 1], b[n - 1] * Prime[n] }];
      a = b[6] (* Fred Daniel Kline, Jun 26 2017 *)
  • PARI
    a(n)=factorback(vecextract(primes(logint(n+!n,2)+1),n))  \\ M. F. Hasler, Mar 26 2011, updated Aug 22 2014, updated Mar 01 2018
    
  • Python
    from operator import mul
    from functools import reduce
    from sympy import prime
    def A019565(n):
        return reduce(mul,(prime(i+1) for i,v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1
    # Chai Wah Wu, Dec 25 2014
    
  • Scheme
    (define (A019565 n) (let loop ((n n) (i 1) (p 1)) (cond ((zero? n) p) ((odd? n) (loop (/ (- n 1) 2) (+ 1 i) (* p (A000040 i)))) (else (loop (/ n 2) (+ 1 i) p))))) ;; (Requires only the implementation of A000040 for prime numbers.) - Antti Karttunen, Apr 20 2017

Formula

G.f.: Product_{k>=0} (1 + prime(k+1)*x^2^k), where prime(k)=A000040(k). - Ralf Stephan, Jun 20 2003
a(n) = f(n, 1, 1) with f(x, y, z) = if x > 0 then f(floor(x/2), y*prime(z)^(x mod 2), z+1) else y. - Reinhard Zumkeller, Mar 13 2010
For all n >= 0: A048675(a(n)) = n; A013928(a(n)) = A064273(n). - Antti Karttunen, Jul 29 2015
a(n) = a(2^x)*a(2^y)*a(2^z)*... = prime(x+1)*prime(y+1)*prime(z+1)*..., where n = 2^x + 2^y + 2^z + ... - Benedict W. J. Irwin, Jul 24 2016
From Antti Karttunen, Apr 18 2017 and Jun 18 2017: (Start)
a(n) = A097248(A260443(n)), a(A005187(n)) = A283475(n), A108951(a(n)) = A283477(n).
A055396(a(n)) = A001511(n), a(A087207(n)) = A007947(n). (End)
a(2^n - 1) = A002110(n). - Michael De Vlieger, Jul 05 2017
a(n) = A225546(A000079(n)). - Peter Munn, Oct 31 2019
From Peter Munn, Mar 04 2022: (Start)
a(2n) = A003961(a(n)); a(2n+1) = 2*a(2n).
a(x XOR y) = A059897(a(x), a(y)) = A089913(a(x), a(y)), where XOR denotes bitwise exclusive OR (A003987).
a(n+1) = A334747(a(n)).
a(x+y) = A331590(a(x), a(y)).
a(n) = A336322(A008578(n+1)).
(End)

Extensions

Definition corrected by Klaus-R. Löffler, Aug 20 2014
New name from Peter Munn, Jun 14 2020

A276085 Primorial base log-function: fully additive with a(p) = p#/p, where p# = A034386(p).

Original entry on oeis.org

0, 1, 2, 2, 6, 3, 30, 3, 4, 7, 210, 4, 2310, 31, 8, 4, 30030, 5, 510510, 8, 32, 211, 9699690, 5, 12, 2311, 6, 32, 223092870, 9, 6469693230, 5, 212, 30031, 36, 6, 200560490130, 510511, 2312, 9, 7420738134810, 33, 304250263527210, 212, 10, 9699691, 13082761331670030, 6, 60, 13, 30032, 2312, 614889782588491410, 7, 216, 33, 510512, 223092871, 32589158477190044730, 10
Offset: 1

Views

Author

Antti Karttunen, Aug 21 2016

Keywords

Comments

Completely additive with a(p^e) = e * A002110(A000720(p)-1).
This is a left inverse of A276086 ("primorial base exp-function"), hence the name "primorial base log-function". When the domain is restricted to the terms of A048103, this works also as a right inverse, as A276086(a(A048103(n))) = A048103(n) for all n >= 1. - Antti Karttunen, Apr 24 2022
On average, every third term is a multiple of 4. See A369001. - Antti Karttunen, May 26 2024

Crossrefs

A left inverse of A276086.
Positions of multiples of k in this sequence, for k=2, 3, 4, 5, 8, 27, 3125: A003159, A339746, A369002, A373140, A373138, A377872, A377878.
Cf. A036554 (positions of odd terms), A035263, A096268 (parity of terms).
Cf. A372575 (rgs-transform), A372576 [a(n) mod 360], A373842 [= A003415(a(n))].
Cf. A373145 [= gcd(A003415(n), a(n))], A373361 [= gcd(n, a(n))], A373362 [= gcd(A001414(n), a(n))], A373485 [= gcd(A083345(n), a(n))], A373835 [= gcd(bigomega(n), a(n))], and also A373367 and A373147 [= A003415(n) mod a(n)], A373148 [= a(n) mod A003415(n)].
Other completely additive sequences with primes p mapped to a function of p include: A001222 (with a(p)=1), A001414 (with a(p)=p), A059975 (with a(p)=p-1), A341885 (with a(p)=p*(p+1)/2), A373149 (with a(p)=prevprime(p)), A373158 (with a(p)=p#).
Cf. also A276075 for factorial base and A048675, A054841 for base-2 and base-10 analogs.

Programs

  • Mathematica
    nn = 60; b = MixedRadix[Reverse@ Prime@ Range@ PrimePi[nn + 1]]; Table[FromDigits[#, b] &@ Reverse@ If[n == 1, {0}, Function[k, ReplacePart[Table[0, {PrimePi[k[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, k]]@ FactorInteger@ n], {n, nn}] (* Version 10.2, or *)
    f[w_List] := Total[Times @@@ Transpose@ {Map[Times @@ # &, Prime@ Range@ Range[0, Length@ w - 1]], Reverse@ w}]; Table[f@ Reverse@ If[n == 1, {0}, Function[k, ReplacePart[Table[0, {PrimePi[k[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, k]]@ FactorInteger@ n], {n, 60}] (* Michael De Vlieger, Aug 30 2016 *)
  • PARI
    A276085(n) = { my(f = factor(n), pr=1, i=1, s=0); for(k=1, #f~, while(i <= primepi(f[k, 1])-1, pr *= prime(i); i++); s += f[k, 2]*pr); (s); }; \\ Antti Karttunen, Nov 11 2024
    
  • Python
    from sympy import primorial, primepi, factorint
    def a002110(n):
        return 1 if n<1 else primorial(n)
    def a(n):
        f=factorint(n)
        return sum(f[i]*a002110(primepi(i) - 1) for i in f)
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 22 2017

Formula

a(1) = 0; for n > 1, a(n) = a(A028234(n)) + (A067029(n) * A002110(A055396(n)-1)).
a(1) = 0, a(n) = (e1*A002110(i1-1) + ... + ez*A002110(iz-1)) when n = prime(i1)^e1 * ... * prime(iz)^ez.
Other identities.
For all n >= 0:
a(A276086(n)) = n.
a(A000040(1+n)) = A002110(n).
a(A002110(1+n)) = A143293(n).
From Antti Karttunen, Apr 24 & Apr 29 2022: (Start)
a(A283477(n)) = A283985(n).
a(A108951(n)) = A346105(n). [The latter has a similar additive formula as this sequence, but instead of primorials, uses their partial sums]
When applied to sequences where a certain subset of the divisors of n has been multiplicatively encoded with the help of A276086, this yields a corresponding number-theoretical sequence, i.e. completes their computation:
a(A319708(n)) = A001065(n) and a(A353564(n)) = A051953(n).
a(A329350(n)) = A069359(n) and a(A329380(n)) = A323599(n).
In the following group, the sum of the rhs-sequences is n [on each row, as say, A328841(n)+A328842(n)=n], because the pointwise product of the corresponding lhs-sequences is A276086:
a(A053669(n)) = A053589(n) and a(A324895(n)) = A276151(n).
a(A328571(n)) = A328841(n) and a(A328572(n)) = A328842(n).
a(A351231(n)) = A351233(n) and a(A327858(n)) = A351234(n).
a(A351251(n)) = A351253(n) and a(A324198(n)) = A351254(n).
The sum or difference of the rhs-sequences is A108951:
a(A344592(n)) = A346092(n) and a(A346091(n)) = A346093(n).
a(A346106(n)) = A346108(n) and a(A346107(n)) = A346109(n).
Here the two sequences are inverse permutations of each other:
a(A328624(n)) = A328625(n) and a(A328627(n)) = A328626(n).
a(A346102(n)) = A328622(n) and a(A346233(n)) = A328623(n).
a(A346101(n)) = A289234(n). [Self-inverse]
Other correspondences:
a(A324350(x,y)) = A324351(x,y).
a(A003961(A276086(n))) = A276154(n). [The primorial base left shift]
a(A276076(n)) = A351576(n). [Sequence reinterpreting factorial base representation as a primorial base representation]
(End)

Extensions

Name amended by Antti Karttunen, Apr 24 2022
Name simplified, the old name moved to the comments - Antti Karttunen, Jun 23 2024

A067255 Irregular triangle read by rows: row n gives exponents in prime factorization of n.

Original entry on oeis.org

0, 1, 0, 1, 2, 0, 0, 1, 1, 1, 0, 0, 0, 1, 3, 0, 2, 1, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 4, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 3, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Jeppe Stig Nielsen, Feb 20 2002

Keywords

Comments

Row lengths are given by A061395(n), n >= 2: [1, 2, 1, 3, 2, 4, 1, 2, ... ].
This sequence contains every finite sequence of nonnegative integers. - Franklin T. Adams-Watters, Jun 22 2005

Examples

			1 = 2^0
2 = 2^1
3 = 2^0 3^1
4 = 2^2
5 = 2^0 3^0 5^1
6 = 2^1 3^1
... and reading the exponents gives the sequence.
Since for example 99=2^0*3^2*5^0*7^0*11^1, we use this symbol for ninety-nine: 99: {0,2,0,0,1}. Concatenating all the symbols for 1,2,3,4,5,6,..., we get the sequence.
		

Crossrefs

Cf. A133457.
Cf. A001222 (row sums), A061395 (lengths of rows n >= 2).
Cf. A007814 (left edge), A071178 (right edge).
Other versions: A054841 (rows reversed and concatenated into a decimal number), A060175 (square array), A082786 (regular triangle), A124010 (with 0's removed, excepting row 1), A143078 (another irregular triangle).

Programs

  • Haskell
    a067255 n k = a067255_tabf !! (n-1) !! (k-1)
    a067255_row 1 = [0]
    a067255_row n = f n a000040_list where
       f 1 _      = []
       f u (p:ps) = g u 0 where
         g v e = if m == 0 then g v' (e + 1) else e : f v ps
                 where (v',m) = divMod v p
    a067255_tabf = map a067255_row [1..]
    -- Reinhard Zumkeller, Jun 11 2013
  • Mathematica
    f[n_] := If[n == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ n]; Array[f, 29] // Flatten (* Michael De Vlieger, Mar 08 2019 *)

A287352 Irregular triangle T(n,k) = A112798(n,1) followed by first differences of A112798(n).

Original entry on oeis.org

0, 1, 2, 1, 0, 3, 1, 1, 4, 1, 0, 0, 2, 0, 1, 2, 5, 1, 0, 1, 6, 1, 3, 2, 1, 1, 0, 0, 0, 7, 1, 1, 0, 8, 1, 0, 2, 2, 2, 1, 4, 9, 1, 0, 0, 1, 3, 0, 1, 5, 2, 0, 0, 1, 0, 3, 10, 1, 1, 1, 11, 1, 0, 0, 0, 0, 2, 3, 1, 6, 3, 1, 1, 0, 1, 0, 12, 1, 7, 2, 4, 1, 0, 0, 2, 13
Offset: 1

Views

Author

Michael De Vlieger, May 23 2017

Keywords

Comments

Irregular triangle T(n,k) = first differences of indices of prime divisors p of n.
Row lengths = (big) Omega(n) = A001222(n).
Row sums = A061395(n).
Row maxima = A286469(n).
We can concatenate the rows 1 <= n <= 28 as none of the values of k in this range exceed 9: {0, 1, 2, 10, 3, 11, 4, 100, 20, 12, 5, 101, 6, 13, 21, 1000, 7, 110, 8, 102, 22, 14, 9, 1001, 30, 15, 200, 103}; a(29) = {10}, which would require a digit greater than 9.
a(1) = 0 by convention.
a(0) is not defined (i.e., null set). a(n) is defined for positive nonzero n.
a(p) = A000720(p) for p prime.
a(p^e) = A000720(p) followed by (e - 1) zeros.
a(Product(p^e)) is the concatenation of the a(p^e) of the unitary prime power divisors p^e of n, sorted by the prime p (i.e. the function a(n) mapped across the terms of row n of A141809).
a(A002110(n)) = an array of n 1s.
T(n,k) could be used to furnish A054841(n). We read data in row n of T(n,k). If T(n,1) = 0, then write 0. If T(n,1) > 0, then increment the k-th place from the right. For k > 1, increment the k-th place to the right of the last-incremented place.
T(n,k) can be used to render n in decimal. If T(n,1) = 0, then write 1. If T(n,1) > 0, then multiply 1 by A000720(T(n,1)). For k > 1, multiply the previous product by pi(x) = A000720(x) of the running total of T(n,k) for each k.
Ignoring zeros in row n > 1 and decoding the remaining values of T(n,k) as immediately above yields the squarefree kernel of n = A007947(n).
Leading zeros of a(n) are trimmed, but as in decimal notation numbers that include leading zeros symbolize the same n as without them. Zeros that precede nonzero values merely multiply implicit 1 by itself until we encounter nonzero values. Thus, {0,0,2} = 1*1*pi(2) = 3, as {2} = pi(2) = 3. Because of this no row n > 1 has 0 for k = 1 of T(n,k).
Interpreting n written in binary as a row of a(n) yields A057335(n).

Examples

			a(1) = {0} by convention.
a(2) = {pi(2)} = {1}.
a(4) = {pi(2), pi(2) - pi(2)}, = {1, 0} since 4 = 2 * 2.
a(6) = {pi(2), pi(3) - pi(2)} = {1, 1} since 6 = 2 * 3.
a(12) = {pi(2), pi(2) - pi(2), pi(3) - pi(2) - pi(2)} = {1, 0, 1}, since 12 = 2 * 2 * 3.
The triangle starts:
   1:  0;
   2:  1;
   3:  2;
   4:  1, 0;
   5:  3;
   6:  1, 1;
   7:  4;
   8:  1, 0, 0;
   9:  2, 0;
  10:  1, 2;
  11:  5;
  12:  1, 0, 1;
  13:  6;
  14:  1, 3;
  15:  2, 1;
  16:  1, 0, 0, 0;
  17:  7;
  18:  1, 1, 0;
  19:  8;
  20:  1, 0, 2;
       ...
		

Crossrefs

Programs

  • Mathematica
    Table[Prepend[Differences@ #, First@ #] & Flatten[FactorInteger[n] /. {p_, e_} /; p > 0 :> ConstantArray[PrimePi@ p, e]], {n, 41}] // Flatten (* Michael De Vlieger, May 23 2017 *)

Formula

T(n,1) = A117798(n,1); T(n,k) = A117798(n,k) - A117798(n, k - 1) for 2 <= k <= A001222(n).

A303767 May code of n: a(0) = 0, and for n > 0, if n = 2^k, a(n) = n + a(n-1), otherwise, when n = 2^k + r (with 0 < r < 2^k), then a(n) = 2^k + a(r-1); see comments for equivalent alternative descriptions.

Original entry on oeis.org

0, 1, 3, 2, 6, 4, 5, 7, 15, 8, 9, 11, 10, 14, 12, 13, 29, 16, 17, 19, 18, 22, 20, 21, 23, 31, 24, 25, 27, 26, 30, 28, 60, 32, 33, 35, 34, 38, 36, 37, 39, 47, 40, 41, 43, 42, 46, 44, 45, 61, 48, 49, 51, 50, 54, 52, 53, 55, 63, 56, 57, 59, 58, 62, 126, 64, 65, 67, 66, 70, 68, 69, 71, 79, 72, 73, 75, 74, 78, 76, 77, 93, 80, 81
Offset: 0

Views

Author

Antti Karttunen, May 02 2018

Keywords

Comments

This is also "minimal subset/superset bitmask" transform of the nonnegative integers, A001477. In that transform, applicable to any N -> N injection f, we start from a(0) = 0, after which for n > 0, if there are one or more k_i that are not already present in the sequence among terms a(0) .. a(n-1), and for which bitor(k_i,a(n-1)) = a(n-1), then a(n) = that k_i for which f(k_i) is minimized; otherwise, a(n) = that h_i for which f(h_i) is minimized among the infinite set of numbers h_i for which bitand(h_i,a(n-1)) = a(n-1) and that are not yet present in the sequence. In this case f(n) = A001477(n) = n.
The original, equivalent definition is:
a(0) = 0 and for n > 0, if there are one or more k_i that are not already present in the sequence among terms a(0) .. a(n-1), and for which bitor(k_i,a(n-1)) = a(n-1), then a(n) = that k_i which gives minimum value of A019565(k_i) amongst them; otherwise, when no such k_i exists, a(n) = the least number not already present that can be obtained by toggling a single 0-bit of a(n-1) to 1. This is done by trying to toggle successive vacant bits from the least significant end of the binary representation of a(n-1), until such a sum a(n-1) + 2^h (= a(n-1) bitxor 2^h) is found that is not already present in the sequence.
Shares with permutations like A003188, A006068, A300838, A302846, A303765 and A304083 the property that when moving from any a(n) to a(n+1) either a subset of 0-bits are toggled on (changed to 1's), or a subset of 1-bits are toggled off (changed to 0's), but no both kind of changes may occur at the same step.
Also, like A003188, A006068 and many other base-2 representation related permutations, this permutation preserves the binary size of n (A000523(n)), and furthermore, a(n) seems to stay at most points (except at powers of 2) remarkably close to n.
From Antti Karttunen, May 23 2018: (Start)
Outline of the proof that the definition involving A019565 is equivalent to the recurrent formula:
Even though A019565 is nonmonotonic, for example A019565(4) = 5 = p_3 < A019565(3) = 6 = p_1 * p_2, and in general, although there are always primes p_k < p_{i1} * p_{i2} * ... * p_{ih}, with i1, i2, ..., ih < k, it doesn't matter here, because not just the position of the most significant 1-bit is monotonic in this sequence (see the binary representation at A304747), but also in each subrange (2^k)+2 .. (2^(k+1))-1 the position of the second most significant 1-bit moves only leftward, i.e., is monotonic, which follows from the recursive formula.
To see this, consider the first time in this sequence when in a batch of terms (of equal binary width) we have bits in position k (the most significant position) and (k-1) on (that is, both are 1's), the latter corresponding to prime p_k: while in principle a bit-based rule could choose to subtract 2^(k-1), in preference to any 1-bits to the right of it (that correspond to primes p_{i1} .. p_{ih}), it cannot do so at this stage, because it is the second most significant 1-bit, and then it would not move only leftward, contradicting what was said above. Neither this can occur later when more 1-bits have appeared to their left: the recursive formula guarantees it.
Also conversely, even though p_4 = 7 > 6 = p_1 * p_2, and in general, we always have such prime p_k > p_{i1} * p_{i2} * ... * p_{ih}, with i1, i2, ..., ih < k, and while here A019565-based rule (see comments in A303760) would prefer dividing p_k out instead of any subset of p_{i1} .. p_{ih}, it happens that in that rule, the index of the largest prime (A061395) grows monotonically, so at the stage where p_k is the largest prime of the batch of length 2^(k-1), p_k just cannot be divided out, and also here the structure of the later batches is strictly determined by recursion.
(End)

Examples

			From _Michael De Vlieger_, May 23 2018: (Start)
Table below shows the initial 17 terms at right. First column is index n,
second shows "." if A303760(n) = largest divisor of A303760(n-1), or factor p.
   n     p\d  m=A303760(n)  A054841(m)    a(n)
  -------------------------------------------
   0       .        1               0       0
   1       2        2               1       1
   2       3        6              11       3
   3       .        3              10       2
   4       5       15             110       6
   5       .        5             100       4
   6       2       10             101       5
   7       3       30             111       7
   8       7      210            1111      15
   9       .        7            1000       8
  10       2       14            1001       9
  11       3       42            1011      11
  12       .       21            1010      10
  13       5      105            1110      14
  14       .       35            1100      12
  15       2       70            1101      13
  16      11      770           11101      29
  ...  (End)
		

Crossrefs

Cf. A303768 (inverse), A304747 (terms shown in base-2).
Cf. also A303763, A303765, A303769, A303775, A304083 (similar sequences).

Programs

  • Mathematica
    Map[FromDigits[#, 2] &@ Reverse@ If[# == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #] &@# &, Nest[Append[#, Block[{d = Divisors@ #[[-1]], p = 2}, If[Complement[d, #] != {}, Complement[d, #][[1]], While[Nand[Mod[#[[-1]], p] != 0, FreeQ[#, p #[[-1]] ] ], p = NextPrime@ p]; p #[[-1]] ] ] ] &, {1}, 83]] (* Michael De Vlieger, May 23 2018 *)
  • PARI
    A209229(n) = (n && !bitand(n,n-1));
    A053644(n) = { my(k=1); while(k<=n, k<<=1); (k>>1); }; \\ From A053644
    A303767(n) = if(!n,n,if(A209229(n),n+A303767(n-1),A053644(n)+A303767(n-A053644(n)-1))); \\ Program based on new recurrence added May 06 2018
    
  • PARI
    up_to = (2^7)-1;
    A006519(n) = (2^valuation(n, 2));
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    v303767 = vector(up_to);
    m303768 = Map();
    w=1; for(n=1,up_to,s = Set([]); for(m=1,w, if((bitor(w,m)==w) && !mapisdefined(m303768,m), s = setunion(Set([A019565(m)]),s))); if(length(s)>0, w = A048675(vecmin(s)), b=A006519(1+w); while(bitand(w,b) || mapisdefined(m303768,w+b), b <<= 1); w += b); v303767[n] = w; mapput(m303768,w,n));
    A303767(n) = if(!n,n,v303767[n]);
    A303768(n) = if(!n,n,mapget(m303768,n));

Formula

a(0) = 0, and for n > 0, if n = 2^k, a(n) = n + a(n-1), otherwise, when n = 2^k + r (with 0 < r < 2^k), then a(n) = 2^k + a(r-1). \\ Antti Karttunen, May 06 2018
a(n) = A048675(A303760(n)).
a(n) = A052331(A303771(n)).
For all n >= 1, A000523(a(n)) = A000523(n), A007088(a(n)) = A304747(n).

Extensions

Name replaced with an equivalent, but simpler definition by Antti Karttunen, May 06 2018

A054842 If n = a + 10 * b + 100 * c + 1000 * d + ... then a(n) = (2^a) * (3^b) * (5^c) * (7^d) * ...

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 9, 18, 36, 72, 144, 288, 576, 1152, 2304, 4608, 27, 54, 108, 216, 432, 864, 1728, 3456, 6912, 13824, 81, 162, 324, 648, 1296, 2592, 5184, 10368, 20736, 41472, 243, 486, 972, 1944
Offset: 0

Views

Author

Henry Bottomley, Apr 11 2000

Keywords

Comments

a((10^k-1)/9) = Primorial(k)= A061509((10^k-1)/9). This is a rearrangement of whole numbers. a(m) = a(n) iff m = n. (Unlike A061509, in which a(n) = a(n*10^k).) - Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 14 2003
Part of the previous comment is incorrect: as a set, this sequence consists of numbers n such that the largest exponent appearing in the prime factorization of n is 9. So this cannot be a rearrangement (or permutation) of the natural numbers. - Tom Edgar, Oct 20 2015

Examples

			a(15)=96 because 3^1 * 2^5 = 3*32 = 96.
		

Crossrefs

Cf. analogous sequences for other bases: A019565 (base 2), A101278 (base 3), A101942 (base 4), A101943 (base 5), A276076 (factorial base), A276086 (primorial base).

Programs

  • Haskell
    a054842 = f a000040_list 1 where
       f _      y 0 = y
       f (p:ps) y x = f ps (y * p ^ d) x'  where (x', d) = divMod x 10
    -- Reinhard Zumkeller, Aug 03 2015
    
  • Mathematica
    A054842[n_] := Times @@ (Prime[Range[Length[#], 1, -1]]^#) & [IntegerDigits[n]];
    Array[A054842, 100, 0] (* Paolo Xausa, Nov 25 2024 *)
  • PARI
    a(n)= my(d=Vecrev(digits(n))); factorback(primes(#d), d); \\ Ruud H.G. van Tol, Nov 28 2024

Formula

a(n) = f(n, 1, 1) with f(x, y, z) = if x > 0 then f(floor(x/10), y*prime(z)^(x mod 10), z+1) else y. - Reinhard Zumkeller, Mar 13 2010

A090880 Suppose n=(p1^e1)(p2^e2)... where p1,p2,... are the prime numbers and e1,e2,... are nonnegative integers. Then a(n) = e1 + (e2)*3 + (e3)*9 + (e4)*27 + ... + (ek)*(3^(k-1)) + ...

Original entry on oeis.org

0, 1, 3, 2, 9, 4, 27, 3, 6, 10, 81, 5, 243, 28, 12, 4, 729, 7, 2187, 11, 30, 82, 6561, 6, 18, 244, 9, 29, 19683, 13, 59049, 5, 84, 730, 36, 8, 177147, 2188, 246, 12, 531441, 31, 1594323, 83, 15, 6562, 4782969, 7, 54, 19, 732, 245, 14348907, 10, 90, 30, 2190
Offset: 1

Views

Author

Sam Alexander, Dec 12 2003

Keywords

Comments

Replace "3" with "x" and extend the definition of a to positive rationals and a becomes an isomorphism between positive rationals under multiplication and polynomials over Z under addition. This remark generalizes A001222, A048675 and A054841: evaluate said polynomial at x=1, x=2 and x=10, respectively.
For examples of such evaluations at x=3, see "Other identities" in the Formula section. - Antti Karttunen, Jul 31 2015

References

  • Joseph J. Rotman, The Theory of Groups: An Introduction, 2nd ed. Boston: Allyn and Bacon, Inc. 1973. Page 9, problem 1.26.

Crossrefs

Programs

Formula

a(1) = 0; for n > 1, a(n) = 3^(A055396(n)-1) + a(A032742(n)). [Where A055396(n) gives the index of the smallest prime dividing n and A032742(n) gives the largest proper divisor of n.] - Antti Karttunen, Jul 29 2015
Other identities. For all n >= 0:
a(A206296(n)) = A006190(n).
a(A260443(n)) = A178590(n).

Extensions

More terms from Ray Chandler, Dec 20 2003

A104244 Suppose m = Product_{i=1..k} p_i^e_i, where p_i is the i-th prime number and each e_i is a nonnegative integer. Then we can define P_m(x) = Sum_{i=1..k} e_i*x^(i-1). The sequence is the square array A(n,m) = P_m(n) read by descending antidiagonals.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 1, 2, 3, 1, 0, 2, 4, 2, 4, 1, 0, 1, 3, 9, 2, 5, 1, 0, 3, 8, 4, 16, 2, 6, 1, 0, 2, 3, 27, 5, 25, 2, 7, 1, 0, 2, 4, 3, 64, 6, 36, 2, 8, 1, 0, 1, 5, 6, 3, 125, 7, 49, 2, 9, 1, 0, 3, 16, 10, 8, 3, 216, 8, 64, 2, 10, 1, 0, 1, 4, 81, 17, 10, 3, 343, 9, 81, 2, 11, 1, 0, 2, 32, 5
Offset: 1

Views

Author

Olaf Voß, Feb 26 2005

Keywords

Comments

From Antti Karttunen, Jul 29 2015: (Start)
The square array A(row,col) is read by downwards antidiagonals as: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
A(n,m) (entry at row=n, column=m) gives the evaluation at x=n of the polynomial (with nonnegative integer coefficients) bijectively encoded in the prime factorization of m. See A206284, A206296 for the details of that encoding. (The roles of variables n and m were accidentally swapped in this description, corrected by Antti Karttunen, Oct 30 2016)
(End)
Each row is a completely additive sequence, row n mapping prime(m) to n^(m-1). - Peter Munn, Apr 22 2022

Examples

			a(13) = 3 because 3 = p_1^0 * p_2^1 * p_3^0 * ..., so P_3(x) = 0*x^(1-1) + 1*x^(2-1) + 0*x^(3-1) + ... = x. Hence a(13) = A(3,3) = P_3(3) = 3. [Elaborated by _Peter Munn_, Aug 13 2022]
The top left corner of the array:
0, 1,  1, 2,   1,  2,   1,  3,  2,   2,     1,  3,      1,    2,   2, 4
0, 1,  2, 2,   4,  3,   8,  3,  4,   5,    16,  4,     32,    9,   6, 4
0, 1,  3, 2,   9,  4,  27,  3,  6,  10,    81,  5,    243,   28,  12, 4
0, 1,  4, 2,  16,  5,  64,  3,  8,  17,   256,  6,   1024,   65,  20, 4
0, 1,  5, 2,  25,  6,  125, 3, 10,  26,   625,  7,   3125,  126,  30, 4
0, 1,  6, 2,  36,  7,  216, 3, 12,  37,  1296,  8,   7776,  217,  42, 4
0, 1,  7, 2,  49,  8,  343, 3, 14,  50,  2401,  9,  16807,  344,  56, 4
0, 1,  8, 2,  64,  9,  512, 3, 16,  65,  4096, 10,  32768,  513,  72, 4
0, 1,  9, 2,  81, 10,  729, 3, 18,  82,  6561, 11,  59049,  730,  90, 4
0, 1, 10, 2, 100, 11, 1000, 3, 20, 101, 10000, 12, 100000, 1001, 110, 4
...
		

Crossrefs

Cf. A000720.
Transpose: A104245.
Main diagonal: A090883.
Row 1: A001222, row 2: A048675, row 3: A090880, row 4: A090881, row 5: A090882, row 10: A054841; and, in the extrapolated table, row 0: A007814, row -1: A195017.
Other completely additive sequences with prime(k) mapped to a function of k include k: A056239, k-1: A318995, k+1: A318994, k^2: A289506, 2^k-1: A293447, k!: A276075, F(k-1): A265753, F(k-2): A265752.
For completely additive sequences with primes p mapped to a function of p, see A001414.
For completely additive sequences where some primes are mapped to 1, the rest to 0 (notably, some ruler functions) see the cross-references in A249344.
For completely additive sequences, s, with primes p mapped to a function of s(p-1) and maybe s(p+1), see A352957.
See the formula section for the relationship to A073133, A206296.
See the comments for the relevance of A206284.
A297845 represents multiplication of the relevant polynomials.
Cf. A090884, A248663, A265398, A265399 for other related sequences.
A167219 lists columns that contain their own column number.

Formula

A(n,A206296(k)) = A073133(n,k). [This formula demonstrates how this array can be used with appropriately encoded polynomials. Note that A073133 reads its antidiagonals by ascending order, while here the order is opposite.] - Antti Karttunen, Oct 30 2016
From Peter Munn, Apr 05 2021: (Start)
The sequence is defined by the following identities:
A(n, 3) = n;
A(n, m*k) = A(n, m) + A(n, k);
A(n, A297845(m, k)) = A(n, m) * A(n, k).
(End)

Extensions

Starting offset changed from 0 to 1 by Antti Karttunen, Jul 29 2015
Name edited (and aligned with rest of sequence) by Peter Munn, Apr 23 2022
Showing 1-10 of 28 results. Next