cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A073012 Decimal expansion of Robbins constant.

Original entry on oeis.org

6, 6, 1, 7, 0, 7, 1, 8, 2, 2, 6, 7, 1, 7, 6, 2, 3, 5, 1, 5, 5, 8, 3, 1, 1, 3, 3, 2, 4, 8, 4, 1, 3, 5, 8, 1, 7, 4, 6, 4, 0, 0, 1, 3, 5, 7, 9, 0, 9, 5, 3, 6, 0, 4, 8, 0, 8, 9, 4, 4, 2, 2, 9, 4, 7, 9, 5, 8, 4, 6, 4, 6, 1, 3, 8, 5, 9, 7, 6, 3, 1, 3, 0, 6, 6, 5, 2, 4, 8, 0, 7, 6, 8, 1, 0, 7, 1, 2, 0, 1, 5, 1, 7, 0, 9
Offset: 0

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

The average distance between two points chosen at random inside a unit cube.
This constant was named after the American mathematician David Peter Robbins (1942 - 2003). - Amiram Eldar, Aug 25 2020

Examples

			0.66170718226717623515583113324841358174640013579095...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 479.
  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 693.
  • Francois Le Lionnais, Les nombres remarquables, Paris: Hermann, 1983. See p. 30.

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[4/105 + 17/105*Sqrt[2] - 2/35*Sqrt[3] + 1/5*Log[1 + Sqrt[2]] + 2/5*Log[2 + Sqrt[3]] - 1/15*Pi, 110]] [[1]]
  • PARI
    (4 + 17*sqrt(2) - 6*sqrt(3) + 21*log(1 + sqrt(2)) + 42*log(2 + sqrt(3)) - 7*Pi)/105 \\ G. C. Greubel, Jan 11 2017

Formula

4/105 + (17/105) * sqrt(2) - (2/35) * sqrt(3) + (1/5) * log(1+sqrt(2)) + (2/5) * log(2+sqrt(3)) - (1/15) * Pi. - Eric W. Weisstein, Mar 02 2005

A348680 Decimal expansion of the average length of a chord in a unit square defined by a point on the perimeter and a direction, both uniformly and independently chosen at random.

Original entry on oeis.org

7, 0, 9, 8, 0, 1, 5, 0, 6, 6, 1, 4, 0, 0, 7, 8, 2, 7, 4, 6, 3, 7, 4, 7, 3, 1, 4, 6, 4, 4, 5, 1, 7, 9, 7, 1, 9, 4, 9, 9, 4, 0, 8, 5, 3, 4, 4, 5, 4, 5, 2, 4, 7, 3, 5, 5, 8, 9, 5, 4, 9, 2, 1, 5, 0, 7, 8, 9, 8, 0, 1, 3, 5, 9, 1, 0, 1, 4, 4, 4, 2, 2, 6, 2, 1, 0, 4, 2, 9, 8, 8, 2, 9, 5, 7, 0, 1, 2, 5, 7, 9, 7, 9, 1, 1
Offset: 0

Views

Author

Amiram Eldar, Oct 29 2021

Keywords

Examples

			0.70980150661400782746374731464451797194994085344545...
		

References

  • A. M. Mathai, An introduction to geometrical probability: distributional aspects with applications, Amsterdam: Gordon and Breach, 1999, p. 221, ex. 2.3.7.

Crossrefs

Programs

  • Mathematica
    RealDigits[(3 * Log[1 + Sqrt[2]] + 1 - Sqrt[2])/Pi, 10, 100][[1]]
  • PARI
    (3*log(1 + sqrt(2)) + 1 - sqrt(2))/Pi \\ Michel Marcus, Oct 29 2021

Formula

Equals (3*log(1 + sqrt(2)) + 1 - sqrt(2))/Pi.

A348681 Decimal expansion of the average length of a chord in a unit square defined by the intersection of the perimeter with a straight line passing through 2 points uniformly and independently chosen at random in the interior of the square.

Original entry on oeis.org

1, 0, 4, 2, 8, 1, 0, 8, 6, 6, 3, 2, 9, 4, 4, 1, 3, 5, 6, 6, 6, 1, 9, 6, 4, 7, 1, 3, 2, 1, 4, 4, 8, 7, 9, 4, 9, 8, 2, 8, 0, 6, 3, 1, 3, 5, 5, 5, 8, 0, 1, 6, 6, 8, 3, 5, 9, 2, 4, 2, 1, 0, 3, 7, 5, 0, 1, 0, 1, 5, 7, 8, 6, 6, 0, 9, 6, 3, 1, 6, 6, 3, 7, 3, 5, 8, 5, 6, 2, 6, 5, 8, 5, 0, 5, 2, 2, 9, 0, 4, 9, 3, 5, 8, 2
Offset: 1

Views

Author

Amiram Eldar, Oct 29 2021

Keywords

Examples

			1.04281086632944135666196471321448794982806313555801...
		

References

  • A. M. Mathai, An introduction to geometrical probability: distributional aspects with applications, Amsterdam: Gordon and Breach, 1999, p. 221, ex. 2.3.7.

Crossrefs

Programs

  • Mathematica
    RealDigits[(2/3) * (Log[1 + Sqrt[2]] + (2 + Sqrt[2])/5), 10, 100][[1]]
  • PARI
    (2/3) * (log(1 + sqrt(2)) + (2 + sqrt(2))/5) \\ Michel Marcus, Oct 29 2021

Formula

Equals (2/3) * (log(1 + sqrt(2)) + (2 + sqrt(2))/5).

A254140 Decimal expansion of the average reciprocal distance between two points chosen at random in a unit square.

Original entry on oeis.org

2, 9, 7, 3, 2, 0, 9, 5, 9, 8, 2, 4, 7, 3, 7, 8, 7, 0, 2, 5, 2, 8, 1, 8, 5, 6, 6, 7, 6, 3, 9, 5, 7, 1, 7, 9, 8, 0, 1, 9, 7, 4, 5, 4, 7, 9, 2, 1, 0, 6, 1, 0, 8, 7, 8, 7, 7, 7, 6, 0, 9, 4, 5, 0, 6, 2, 5, 8, 6, 5, 4, 3, 2, 2, 7, 1, 9, 6, 1, 6, 3, 2, 8, 6, 7, 6, 4, 4, 1, 8, 8, 5, 3, 7, 5, 0, 2, 0, 7, 4, 4, 4, 6, 9, 4
Offset: 1

Views

Author

Jean-François Alcover, Jan 26 2015

Keywords

Examples

			2.97320959824737870252818566763957179801974547921061 ...
		

Crossrefs

Cf. A091505.

Programs

  • Mathematica
    RealDigits[4/3 - 4*Sqrt[2]/3 + 4*Log[1 + Sqrt[2]], 10, 105] // First

Formula

Integral over a unit square of 1/sqrt((r1-q1)^2 + (r2-q2)^2) dr1 dr2 dq1 dq2 = 4/3 - 4*sqrt(2)/3 + 4*log(1 + sqrt(2)).

A091506 Decimal expansion of (2 + sqrt(2) + 5*arcsinh(1))/9.

Original entry on oeis.org

8, 6, 9, 0, 0, 9, 0, 5, 5, 2, 7, 4, 5, 3, 4, 4, 6, 3, 8, 8, 4, 9, 7, 0, 5, 9, 4, 3, 4, 5, 4, 0, 6, 6, 2, 4, 8, 5, 6, 7, 1, 9, 2, 7, 9, 6, 3, 1, 6, 8, 0, 5, 6, 9, 6, 6, 0, 3, 5, 0, 8, 6, 4, 5, 8, 4, 1, 7, 9, 8, 2, 2, 1, 7, 4, 6, 9, 3, 0, 5, 3, 1, 1, 3, 2, 1, 3, 5, 5, 4, 8, 7, 5, 4, 3, 5, 7, 5, 4, 1, 1, 3
Offset: 0

Views

Author

Eric W. Weisstein, Jan 16 2004

Keywords

Comments

Average distance between two points chosen at random on two different edges of a unit square.

Examples

			0.86900905527453446388497059434540662485671927963168056966035...
		

References

  • Jonathan Borwein, David Bailey, and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery. Natick: A K Peters (2004): p. 66, Example 57(a).

Crossrefs

Cf. A091505.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (2 + Sqrt(2) + 5*Argsinh(1))/9; // G. C. Greubel, Aug 17 2018
  • Mathematica
    RealDigits[(2 + Sqrt[2] + 5ArcSinh[1])/9, 10, 120][[1]] (* Harvey P. Dale, May 22 2013 *)
  • PARI
    (2 + sqrt(2) + 5*asinh(1))/9 \\ G. C. Greubel, Aug 17 2018
    

Formula

Also equals (2 + sqrt(2) + 5*log(1 + sqrt(2)))/9. - Jean-François Alcover, Feb 14 2014
James D. Klein proved that this constant is equal to 2/3*int(int(sqrt(x^2 + y^2), x = 0..1), y = 0..1) + 1/3*int(int(sqrt(1 + (y - u)^2), u = 0..1), y = 0..1). - John M. Campbell, Apr 02 2016

Extensions

Broken link fixed by John M. Campbell, Apr 02 2016

A242071 Decimal expansion of 'beta', a constant appearing in the random links Traveling Salesman Problem.

Original entry on oeis.org

2, 0, 4, 1, 5, 4, 8, 1, 8, 6, 4, 1, 2, 1, 3, 2, 4, 1, 8, 0, 4, 5, 4, 9, 0, 1, 5, 8, 3, 8, 1, 4, 5, 5, 8, 6, 6, 3, 4, 0, 2, 5, 0, 2, 5, 2, 5, 6, 4, 6, 9, 1, 9, 1, 5, 5, 1, 2, 1, 3, 1, 2, 8, 1, 0, 5, 3, 6, 2, 1, 0, 6, 3, 7, 6, 7, 0, 0, 1, 2, 0, 9, 7, 1, 1, 0, 5, 5, 6, 4, 3, 9, 7, 6, 4, 3, 2, 8, 6, 9, 5, 5
Offset: 1

Views

Author

Jean-François Alcover, Aug 14 2014

Keywords

Examples

			2.041548186412132418045490158381455866340250252564691915512131281...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.5 Traveling Salesman constants, p. 499.

Crossrefs

Programs

  • Mathematica
    y[x_] := -2 - ProductLog[-1, E^(-2-x)*(2 - 2*E^x + x)]; beta = (1/2)*NIntegrate[y[x], {x, 0, Infinity}, WorkingPrecision -> 102]; beta // RealDigits // First

Formula

beta = integral_{x>0} y(x) dx, where y(x) = -2 - W_(-1) (e^(-2-x) *(2-2*e^x+x)), W_k(z) being the k-th order Lambert W function (also known as ProductLog). y(x) is implicitly defined by the equation (1+x/2)*exp(-x)+(1+y(x)/2)*exp(-y(x)) = 1.

A254149 Decimal expansion of the average reciprocal length of a line segment picked at random in a unit 4-cube.

Original entry on oeis.org

1, 4, 8, 1, 4, 3, 2, 6, 3, 6, 5, 2, 1, 0, 6, 4, 7, 4, 9, 7, 4, 8, 7, 6, 9, 1, 4, 0, 7, 2, 7, 6, 5, 8, 3, 0, 2, 5, 7, 0, 9, 5, 2, 6, 3, 4, 1, 5, 4, 8, 6, 1, 0, 4, 8, 8, 7, 7, 5, 3, 7, 8, 9, 6, 7, 1, 6, 8, 2, 3, 9, 9, 1, 0, 3, 5, 0, 7, 1, 2, 8, 8, 9, 1, 6, 3, 6, 9, 5, 7, 7, 9, 8, 6, 9, 0, 5, 5, 2, 9, 1, 8, 5
Offset: 1

Views

Author

Jean-François Alcover, Jan 26 2015

Keywords

Examples

			1.481432636521064749748769140727658302570952634154861...
		

Crossrefs

Programs

  • Mathematica
    Ti2[x_] := (I/2)*(PolyLog[2, -I*x] - PolyLog[2, I*x]); Delta4[-1]=-152/315 - 8*Pi/15 - 16/5*Log[2] + 2/5*Log[3] + 68/105*Sqrt[2] - 16/35*Sqrt[3] + 4/5*Log[1 + Sqrt[2]] + 32/5*Log[1 + Sqrt[3]] - 8/3*Catalan + 8*Ti2[3 - 2 Sqrt[2]] - 8/5*Sqrt[2]*ArcTan[Sqrt[2]/4] // Re; RealDigits[Delta4[-1], 10, 103] // First
  • Python
    from mpmath import *
    mp.dps=104
    x=3 - 2*sqrt(2)
    Ti2x=(j/2)*(polylog(2, -j*x) - polylog(2, j*x))
    C=-152/315 - 8*pi/15 - 16/5*log(2) + 2/5*log(3) + 68/105*sqrt(2) - 16/35*sqrt(3) + 4/5*log(1 + sqrt(2)) + 32/5*log(1 + sqrt(3)) - 8/3*catalan + 8*Ti2x - 8/5*sqrt(2)*atan(sqrt(2)/4)
    print([int(n) for n in list(str(C.real).replace('.','')[:-1])]) # Indranil Ghosh, Jul 03 2017

Formula

Delta_4(-1) = Integral over a unit 4-cube of 1/sqrt((r1-q1)^2+(r2-q2)^2+(r3-q3)^2+(r4-q4)^2) dr dq.
Delta_4(-1) = -152/315 - 8*Pi/15 - 16/5*log(2) + 2/5*log(3) + 68/105*sqrt(2) - 16/35*sqrt(3) + 4/5*log(1 + sqrt(2)) + 32/5*log(1 + sqrt(3)) - 8/3*Catalan + 8*Ti2(3 - 2*sqrt(2)) - 8/5*sqrt(2)*arctan(sqrt(2)/4), where Ti2 is Lewin's arctan integral.

A348669 Decimal expansion of 2*sqrt(2)*log(1 + sqrt(2))/(3*Pi).

Original entry on oeis.org

2, 6, 4, 5, 0, 5, 0, 0, 7, 0, 0, 7, 8, 6, 9, 8, 4, 5, 5, 1, 5, 7, 7, 5, 2, 0, 1, 2, 9, 7, 2, 2, 5, 2, 6, 9, 3, 6, 3, 4, 0, 0, 0, 9, 0, 9, 6, 8, 0, 5, 1, 8, 3, 0, 5, 6, 2, 2, 4, 4, 3, 7, 2, 5, 8, 6, 4, 0, 2, 1, 3, 7, 3, 7, 6, 4, 3, 5, 6, 7, 9, 4, 6, 7, 5, 8, 9, 8, 3, 5, 6, 9, 7, 2, 3, 5, 1, 3, 7, 2, 5, 3, 4, 3, 4
Offset: 0

Views

Author

Amiram Eldar, Oct 29 2021

Keywords

Comments

The average length of a random line segment in a unit square defined as follows. A line that is making a random angle with a given edge of the square is chosen, and a random distance of this line from a given vertex of this edge is chosen uniformly between 0 and the distance to the opposite vertex in the square. The segment is then being chosen by picking at random two points between the two intersection points of the line with the perimeter of the square.

Examples

			0.26450500700786984551577520129722526936340009096805...
		

Crossrefs

Programs

  • Maple
    evalf(sqrt(8/9)*arcsinh(1)/Pi, 120);  # Alois P. Heinz, Oct 29 2021
  • Mathematica
    RealDigits[2*Sqrt[2]*Log[1 + Sqrt[2]]/(3*Pi), 10, 100][[1]]
  • PARI
    2*sqrt(2)*log(1 + sqrt(2))/(3*Pi) \\ Michel Marcus, Oct 29 2021
Showing 1-8 of 8 results.