cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A248897 Decimal expansion of Sum_{i >= 0} (i!)^2/(2*i+1)!.

Original entry on oeis.org

1, 2, 0, 9, 1, 9, 9, 5, 7, 6, 1, 5, 6, 1, 4, 5, 2, 3, 3, 7, 2, 9, 3, 8, 5, 5, 0, 5, 0, 9, 4, 7, 7, 0, 4, 8, 8, 1, 8, 9, 3, 7, 7, 4, 9, 8, 7, 2, 8, 4, 9, 3, 7, 1, 7, 0, 4, 6, 5, 8, 9, 9, 5, 6, 9, 2, 5, 4, 1, 5, 4, 5, 4, 0, 8, 4, 2, 3, 5, 9, 2, 2, 4, 5, 6, 0, 8
Offset: 1

Views

Author

Bruno Berselli, Mar 06 2015

Keywords

Comments

Value of the Borwein-Borwein function I_3(a,b) for a = b = 1. - Stanislav Sykora, Apr 16 2015
The area of a circle circumscribing a unit-area regular hexagon. - Amiram Eldar, Nov 05 2020

Examples

			1.2091995761561452337293855050947704881893774987284937170465899569254...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), pp. 120-121.
  • L. B. W. Jolley, Summation of Series, Dover (1961), No. 261, pp. 48, 49, (and No. 275).

Crossrefs

Cf. A091682 (Sum_{i >= 0} (i!)^2/(2*i)!).

Programs

  • Mathematica
    RealDigits[2 Sqrt[3] Pi/9, 10, 100][[1]]
  • PARI
    a = 2*Pi/(3*sqrt(3)) \\ Stanislav Sykora, Apr 16 2015

Formula

Equals 2*sqrt(3)*Pi/9 = 1 + 1/6 + 1/30 + 1/140 + 1/630 + 1/2772 + 1/12012 + ...
Equals m*I_3(m,m) = m*Integral_{x>=0} (x/(m^3+x^3)), for any m>0. - Stanislav Sykora, Apr 16 2015
Equals Integral_{x>=0} (1/(1+x^3)) dx. - Robert FERREOL, Dec 23 2016
From Peter Bala, Oct 27 2019: (Start)
Equals 3/4*Sum_{n >= 0} (n+1)!*(n+2)!/(2*n+3)!.
Equals Sum_{n >= 1} 3^(n-1)/(n*binomial(2*n,n)).
Equals 2*Sum_{n >= 1} 1/(n*binomial(2*n,n)). See Boros and Moll, pp. 120-121.
Equals Integral_{x = 0..1} 1/(1 - x^3)^(1/3) dx = Sum_{n >= 0} (-1)^n*binomial(-1/3,n) /(3*n + 1).
Equals 2*Sum_{n >= 1} 1/((3*n-1)*(3*n-2)) = 2*(1 - 1/2 + 1/4 - 1/5 + 1/7 - 1/8 + ...) (added Oct 30 2019). (End)
Equals Product_{k>=1} 9*k^2/(9*k^2 - 1). - Amiram Eldar, Aug 04 2020
From Peter Bala, Dec 13 2021: (Start)
Equals (2/3)*A093602.
Conjecture: for k >= 0, 2*sqrt(3)*Pi/9 = (3/2)^k * k!*Sum_{n = -oo..oo} (-1)^n/ Product_{j = 0..k} (3*n + 3*j + 1). (End)
Equals (3/4)*S - 1, where S = A248682. - Peter Luschny, Jul 22 2022
Equals Integral_{x=0..Pi/2} tan(x)^(1/3)/(sin(2*x) + 1) dx. See MIT Link. - Joost de Winter, Aug 26 2023
Continued fraction: 1/(1 - 1/(7 - 12/(12 - 30/(17 - ... - 2*n*(2*n - 1)/((5*n + 2) - ... ))))). See A000407. - Peter Bala, Feb 20 2024
Equals Sum_{n>=2} 1/binomial(n, floor(n/2)); and trivially if "floor" is replaced by "ceiling". - Richard R. Forberg, Aug 30 2024
Equals Product_{k>=2} (1 + (-1)^k/A001651(k)). - Amiram Eldar, Nov 22 2024
Equals 2*A073010 = 1/A086089 = sqrt(A214549) = exp(A256923) = A275486/2. - Hugo Pfoertner, Nov 22 2024
Equals 1 - (1/6) * Sum_{n>=1} A010815(n)/n. - Friedjof Tellkamp, Apr 05 2025
Equals A248181 - 2. - Pontus von Brömssen, Apr 05 2025

A073016 Decimal expansion of Sum_{n>=1} 1/binomial(2n,n).

Original entry on oeis.org

7, 3, 6, 3, 9, 9, 8, 5, 8, 7, 1, 8, 7, 1, 5, 0, 7, 7, 9, 0, 9, 7, 9, 5, 1, 6, 8, 3, 6, 4, 9, 2, 3, 4, 9, 6, 0, 6, 3, 1, 2, 5, 8, 3, 2, 9, 0, 9, 4, 9, 7, 9, 0, 5, 6, 8, 2, 1, 9, 6, 6, 5, 2, 3, 0, 8, 4, 7, 1, 8, 1, 8, 0, 2, 8, 0, 7, 8, 6, 4, 0, 8, 1, 8, 6, 9, 4, 4, 4, 1, 8, 2, 4, 9, 0, 2, 2, 5, 9, 7, 4, 5, 8, 2, 7
Offset: 0

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Examples

			0.7363998587187150779097951683649234960631258329094979056821966523...
		

References

  • Jean-Marie Monier, Analyse, Tome 3, 2ème année, MP.PSI.PC.PT, Dunod, 1997, Exercice 3.2.1.q' pp. 247 and 439.

Crossrefs

Cf. A000984 (central binomial coefficients), A091682, A248179.

Programs

  • Mathematica
    RealDigits[ N[ (9 + 2*Sqrt[3]*Pi)/27, 110]] [[1]]
  • PARI
    (2*Pi*sqrt(3)+9)/27 \\ Michel Marcus, Aug 10 2014

Formula

Equals (9 + 2*sqrt(3)*Pi)/27.
Equals A091682 - 1.
Equals Integral_{x=0..Pi/2} cos(x)/(2 - cos(x))^2 dx. - Amiram Eldar, Aug 19 2020
From Bernard Schott, May 12 2022: (Start)
Equals Sum_{n>=1} (n!)^2 / (2*n)!.
Equals A248179 / 2. (End)

A248179 Decimal expansion of (2/27)*(9 + 2*sqrt(3)*Pi).

Original entry on oeis.org

1, 4, 7, 2, 7, 9, 9, 7, 1, 7, 4, 3, 7, 4, 3, 0, 1, 5, 5, 8, 1, 9, 5, 9, 0, 3, 3, 6, 7, 2, 9, 8, 4, 6, 9, 9, 2, 1, 2, 6, 2, 5, 1, 6, 6, 5, 8, 1, 8, 9, 9, 5, 8, 1, 1, 3, 6, 4, 3, 9, 3, 3, 0, 4, 6, 1, 6, 9, 4, 3, 6, 3, 6, 0, 5, 6, 1, 5, 7, 2, 8, 1, 6, 3, 7, 3
Offset: 1

Views

Author

Clark Kimberling, Oct 03 2014

Keywords

Examples

			1.472799717437430155819590336729846992126251665818995811364393304616943...
		

References

  • J.-M. Monier, Analyse, Tome 3, 2ème année, MP.PSI.PC.PT, Dunod, 1997, Exercice 3.2.1.q', p. 247.

Crossrefs

Programs

  • Mathematica
    r = 2/27 (9 + 2 Sqrt[3] \[Pi]); u = RealDigits[N[r, 200]][[1]]
  • PARI
    2*(9+sqrt(12)*Pi)/27 \\ Charles R Greathouse IV, Sep 28 2022

Formula

Equals Sum_{h >= 0} 1/binomial(2*h+1, h).
From Amiram Eldar, Nov 16 2021: (Start)
Equals 1 + Integral_{x>=0} 1/(x^2 + x + 1)^2 dx.
Equals 1 + Integral_{x>=1} 1/(x^2 - x + 1)^2 dx.
Equals Integral_{x=0..1} 1/(x^2 - x + 1)^2 dx. (End)
From Bernard Schott, Mar 18 2022: (Start)
Equals 2 * Sum_{n >= 1} (n!)^2/(2*n)!.
Equals 2 * A073016.
Equals hypergeometric function 2F1([1, 2], [3/2], x) at x=1/4. (End)

A307086 Decimal expansion of 4*(5 - sqrt(5)*log(phi))/25, where phi is the golden ratio (A001622).

Original entry on oeis.org

6, 2, 7, 8, 3, 6, 4, 2, 3, 6, 1, 4, 3, 9, 8, 3, 8, 4, 4, 4, 4, 2, 2, 6, 7, 0, 6, 8, 1, 9, 7, 5, 7, 8, 2, 9, 8, 3, 0, 1, 7, 1, 7, 2, 6, 9, 8, 3, 8, 8, 4, 1, 3, 8, 0, 9, 7, 1, 9, 7, 5, 5, 8, 4, 0, 2, 9, 7, 5, 5, 1, 3, 8, 1, 5, 5, 4, 7, 2, 1, 5, 4, 5, 5, 4, 0, 3, 8, 9, 4, 1, 2, 1, 1, 1, 2, 0, 1, 7, 8, 3, 7, 4, 6, 7, 7, 8, 2, 8, 8, 6, 7, 0, 2, 9, 3, 8, 5, 7, 4
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 23 2019

Keywords

Comments

Decimal expansion of the alternating sum of the reciprocals of the central binomial coefficients (A000984).

Examples

			1/1 - 1/2 + 1/6 - 1/20 + 1/70 - 1/252 + ... = 0.62783642361439838444422670681975782983017172698388...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[4 (5 - Sqrt[5] Log[GoldenRatio])/25, 10, 120][[1]]
  • PARI
    4*(5 - sqrt(5)*log((sqrt(5)+1)/2))/25 \\ Charles R Greathouse IV, May 15 2019

Formula

Equals Sum_{k>=0} (-1)^k/binomial(2*k,k).
Equals Sum_{k>=0} (-1)^k*(k!)^2/(2*k)!.
Showing 1-4 of 4 results.