A091823 a(n) = 2*n^2 + 3*n - 1.
4, 13, 26, 43, 64, 89, 118, 151, 188, 229, 274, 323, 376, 433, 494, 559, 628, 701, 778, 859, 944, 1033, 1126, 1223, 1324, 1429, 1538, 1651, 1768, 1889, 2014, 2143, 2276, 2413, 2554, 2699, 2848, 3001, 3158, 3319, 3484, 3653, 3826, 4003, 4184, 4369, 4558, 4751
Offset: 1
Examples
Entries in the ratio 1:2:3 appear in row 14 of Pascal's triangle (A007318) starting at position 4 (1001, 2002, 3003). Entries in the ratio 2:3:4 appear in row 34 of Pascal's triangle starting at position 13 (927983760, 1391975640, 1855967520); and so on (row 62, pos. 26; row 98, pos. 43; ...).
Links
- Bruno Berselli, Table of n, a(n) for n = 1..1000
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011, p. 21. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Milan Janjic, Two Enumerative Functions. [Broken link]
- Leo Tavares, Illustration: Square/Triangular Union
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[2*n^2+3*n-1: n in [1..50]]; // Bruno Berselli, Mar 28 2014
-
Maple
A091823:=n->2*n^2 + 3*n - 1; seq(A091823(n), n=1..100); # Wesley Ivan Hurt, Mar 27 2014
-
Mathematica
Table[2 n^2 + 3 n - 1, {n, 50}] (* Bruno Berselli, Mar 28 2014 *)
-
PARI
a(n)=2*n^2+3*n-1 \\ Charles R Greathouse IV, Sep 24 2015
-
Perl
#!/usr/bin/perl $a = 1; while (1) { $k = $a*(2*$a + 3) - 1; print "$k,"; $a ++; }
Formula
a(n) = n + 4*binomial(2+n, n), with offset 0. - Zerinvary Lajos, May 12 2006
G.f.: x*(4 + x - x^2)/(1 - x)^3. - Vincenzo Librandi, Mar 28 2014
E.g.f.: 1 + exp(x)*(2*x^2 + 5*x - 1). - Stefano Spezia, Jun 16 2024
Comments