cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A243752 Number T(n,k) of Dyck paths of semilength n having exactly k (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of n, where 1=U=(1,1) and 0=D=(1,-1); triangle T(n,k), n>=0, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 3, 1, 1, 11, 2, 9, 16, 12, 4, 1, 1, 57, 69, 5, 127, 161, 98, 35, 7, 1, 323, 927, 180, 1515, 1997, 1056, 280, 14, 4191, 5539, 3967, 1991, 781, 244, 64, 17, 1, 1, 10455, 25638, 18357, 4115, 220, 1, 20705, 68850, 77685, 34840, 5685, 246, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 09 2014

Keywords

Examples

			Triangle T(n,k) begins:
: n\k :    0     1     2     3    4    5  ...
+-----+----------------------------------------------------------
:  0  :    1;                                 [row  0 of A131427]
:  1  :    0,    1;                           [row  1 of A131427]
:  2  :    0,    1,    1;                     [row  2 of A090181]
:  3  :    1,    3,    1;                     [row  3 of A001263]
:  4  :    1,   11,    2;                     [row  4 of A091156]
:  5  :    9,   16,   12,    4,   1;          [row  5 of A091869]
:  6  :    1,   57,   69,    5;               [row  6 of A091156]
:  7  :  127,  161,   98,   35,   7,   1;     [row  7 of A092107]
:  8  :  323,  927,  180;                     [row  8 of A091958]
:  9  : 1515, 1997, 1056,  280,  14;          [row  9 of A135306]
: 10  : 4191, 5539, 3967, 1991, 781, 244, ... [row 10 of A094507]
		

Crossrefs

A097692 Triangle read by rows: a(n,k) = number of paths of n upsteps U and n downsteps D that contain k UDUs.

Original entry on oeis.org

1, 2, 4, 2, 10, 8, 2, 26, 30, 12, 2, 70, 104, 60, 16, 2, 192, 350, 260, 100, 20, 2, 534, 1152, 1050, 520, 150, 24, 2, 1500, 3738, 4032, 2450, 910, 210, 28, 2, 4246, 12000, 14952, 10752, 4900, 1456, 280, 32, 2, 12092, 38214, 54000, 44856, 24192, 8820, 2184, 360, 36, 2
Offset: 0

Views

Author

David Callan, Aug 19 2004; corrected Jun 10 2005

Keywords

Comments

See A091869 for the distribution of the parameter "number of UDUs" on Dyck paths.

Examples

			Table begins
\ k 0, 1, 2, ...
n
0 | 1
1 | 2
2 | 4, 2
3 | 10, 8, 2
4 | 26, 30, 12, 2
5 | 70, 104, 60, 16, 2
6 |192, 350, 260, 100, 20, 2
7 |534, 1152, 1050, 520, 150, 24, 2
The path UDUDUD contains 2 UDUs and a(2,1) = 2 because each of UDUD, DUDU contains one UDU.
		

References

  • Aristidis Sapounakis, Panagiotis Tsikouras, Ioannis Tasoulas, Kostas Manes, Strings of Length 3 in Grand-Dyck Paths and the Chung-Feller Property, Electr. J. Combinatorics, 19 (2012), #P2. - From N. J. A. Sloane, Feb 06 2013

Crossrefs

Column k=0 is A025565. The row sums are the (even) central binomial coefficients A000984.
Cf. A171651.

Programs

  • Maple
    b:= proc(u, d, t) option remember; `if`(u=0 and d=0, 1,
          expand(`if`(u=0, 0, b(u-1, d, 2)*`if`(t=3, x, 1))
          +`if`(d=0, 0, b(u, d-1, `if`(t=2, 3, 1)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 1)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Apr 29 2015
  • Mathematica
    gfForBalancedByNumberUDU=Sqrt[(1 + x - x*y)/(1 - 3*x - x*y)]; Map[CoefficientList[ #, y]&, CoefficientList[Normal[Series[gfForBalancedByNumberUDU, {x, 0, 8}, {y, 0, 8}]], x]]

Formula

G.f.: ((1 + x - x*y)/(1 - 3*x - x*y))^(1/2) = Sum_{n>=0, k>=0} a(n,k) x^n y^k.

Extensions

Keyword tabl changed to tabf by Michel Marcus, Apr 07 2013

A091187 Triangle read by rows: T(n,k) is the number of ordered trees with n edges and k branches.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 4, 1, 4, 12, 16, 9, 1, 5, 20, 40, 45, 21, 1, 6, 30, 80, 135, 126, 51, 1, 7, 42, 140, 315, 441, 357, 127, 1, 8, 56, 224, 630, 1176, 1428, 1016, 323, 1, 9, 72, 336, 1134, 2646, 4284, 4572, 2907, 835, 1, 10, 90, 480, 1890, 5292, 10710, 15240, 14535, 8350, 2188
Offset: 1

Views

Author

Emeric Deutsch, Feb 23 2004

Keywords

Comments

Row sums are the Catalan numbers A000108. Diagonal entries are the Motzkin numbers A001006.
Equals binomial transform of an infinite lower triangular matrix with A001006 as the main diagonal and the rest zeros. [Gary W. Adamson, Dec 31 2008] [Corrected by Paul Barry, Mar 06 2011]
Reversal of A091869. Diagonal sums are A026418(n+2). [Paul Barry, Mar 06 2011]

Examples

			Triangle begins:
  1;
  1, 1;
  1, 2,  2;
  1, 3,  6,   4;
  1, 4, 12,  16,   9;
  1, 5, 20,  40,  45,  21;
  1, 6, 30,  80, 135, 126,  51;
  1, 7, 42, 140, 315, 441, 357, 127;
		

Crossrefs

Cf. A007476. [Gary W. Adamson, Dec 31 2008]

Programs

  • Maple
    M := n->sum(binomial(n+1,q)*binomial(n+1-q,q-1),q=0..ceil((n+1)/2))/(n+1): T := (n,k)->binomial(n-1,k-1)*M(k-1): seq(seq(T(n,k),k=1..n),n=1..13);
  • Mathematica
    (* m = MotzkinNumber *) m[0] = 1; m[n_] := m[n] = m[n - 1] + Sum[m[k]*m[n - 2 - k], {k, 0, n - 2}]; t[n_, k_] := m[k - 1]*Binomial[n - 1, k - 1]; Table[t[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 10 2013 *)

Formula

T(n,k) = M(k-1)*binomial(n-1, k-1), where M(k) = A001006(k) = (Sum_{q=0..ceiling((k+1)/2)} binomial(k+1, q)*binomial(k+1-q, q-1))/(k+1) is a Motzkin number.
G.f.: G = G(t,z) satisfies t*z*G^2 -(1 - z + t*z)*G + 1- z + t*z = 0.
From Paul Barry, Mar 06 2011: (Start)
G.f.: 1/(1-x-xy-x^2y^2/(1-x-xy-x^2y^2/(1-x-xy-x^2y^2/(1-... (continued fraction).
G.f.: (1-x(1+y)-sqrt(1-2x(1+y)+x^2(1+2y-3y^2)))/(2x^2*y^2).
E.g.f.: exp(x(1+y))*Bessel_I(1,2*x*y)/(x*y). (End)

A371408 Number of Dyck paths of semilength n having exactly three (possibly overlapping) occurrences of the consecutive step pattern UDU, where U = (1,1) and D = (1,-1).

Original entry on oeis.org

0, 0, 0, 0, 1, 4, 20, 80, 315, 1176, 4284, 15240, 53295, 183700, 625768, 2110472, 7057505, 23427600, 77271120, 253426752, 827009523, 2686728060, 8693388060, 28026897360, 90058925649, 288516259416, 921755412900, 2937377079000, 9338728806225, 29626186593276
Offset: 0

Views

Author

Alois P. Heinz, Mar 22 2024

Keywords

Examples

			a(4) = 1: UDUDUDUD.
a(5) = 4: UDUDUDUUDD, UDUDUUDUDD, UDUUDUDUDD, UUDUDUDUDD.
		

Crossrefs

Column k=3 of A091869.

Programs

  • Maple
    a:= n-> `if`(n<4, 0, binomial(n-1, 3)*add(binomial(n-3, j)*
             binomial(n-3-j, j-1), j=0..ceil((n-3)/2))/(n-3)):
    seq(a(n), n=0..29);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<5, [0$4, 1][n+1],
         (n-1)*((2*n-7)*a(n-1)+3*(n-2)*a(n-2))/((n-2)*(n-4)))
        end:
    seq(a(n), n=0..29);

Formula

a(n) mod 2 = A121262(n) for n >= 1.

A375253 Expansion of (1 - 2*x + 2*x^2)/(1 - 2*x - 3*x^2)^(7/2).

Original entry on oeis.org

1, 5, 30, 140, 630, 2646, 10710, 41910, 159885, 597025, 2190188, 7914270, 28230020, 99567300, 347720040, 1203777072, 4135047615, 14105322315, 47813634330, 161154659820, 540353553894, 1803226621350, 5991410183850, 19827295283250, 65371101643575
Offset: 0

Views

Author

Seiichi Manyama, Aug 07 2024

Keywords

Crossrefs

Column k=4 of A091869 (with a different offset).

Programs

  • Mathematica
    a[n_]:=(1+n)(2+n)(3+n)(4+n)Hypergeometric2F1[(1-n)/2,-n/2,2,4]/24; Array[a,25,0] (* Stefano Spezia, Aug 07 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec((1-2*x+2*x^2)/(1-2*x-3*x^2)^(7/2))

Formula

a(n) = (binomial(n+4,3)/4) * Sum_{k=0..floor(n/2)} binomial(n+1,n-2*k) * binomial(2*k+1,k).
a(n) = (binomial(n+4,3)/4) * A005717(n+1).
a(n) = ((n+4)/(n*(n+2))) * ((2*n+1)*a(n-1) + 3*(n+3)*a(n-2)).
a(n) = (1 + n)*(2 + n)*(3 + n)*(4 + n)*hypergeom([(1-n)/2, -n/2], [2], 4)/24. - Stefano Spezia, Aug 07 2024

A375259 Expansion of (1 - 3*x + 6*x^2 - 4*x^3)/(1 - 2*x - 3*x^2)^(9/2).

Original entry on oeis.org

1, 6, 42, 224, 1134, 5292, 23562, 100584, 415701, 1671670, 6570564, 25325664, 95982068, 358442280, 1321336152, 4815108288, 17367199983, 62063418186, 219942717918, 773542367136, 2701767769470, 9376778431020, 32353614992790, 111032853586200, 379152389532735
Offset: 0

Views

Author

Seiichi Manyama, Aug 08 2024

Keywords

Crossrefs

Column k=5 of A091869 (with a different offset).

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec((1-3*x+6*x^2-4*x^3)/(1-2*x-3*x^2)^(9/2))

Formula

a(n) = (binomial(n+5,4)/5) * Sum_{k=0..floor(n/2)} binomial(n+1,n-2*k) * binomial(2*k+1,k).
a(n) = (binomial(n+5,4)/5) * A005717(n+1).
a(n) = ((n+5)/(n*(n+2))) * ((2*n+1)*a(n-1) + 3*(n+4)*a(n-2)).

A371411 Number of Dyck paths of semilength 2n having exactly n (possibly overlapping) occurrences of the consecutive step pattern UDU, where U = (1,1) and D = (1,-1).

Original entry on oeis.org

1, 1, 3, 20, 140, 1134, 9702, 87516, 817245, 7852130, 77135630, 771742608, 7839348244, 80661853300, 839138980500, 8813312133840, 93339369441540, 995827949882370, 10694044148599350, 115515073043785800, 1254354063204682440, 13685749828961247180
Offset: 0

Views

Author

Alois P. Heinz, Mar 22 2024

Keywords

Examples

			a(1) = 1: UDUD.
a(2) = 3: UDUDUUDD, UDUUDUDD, UUDUDUDD.
a(3) = 20: UDUDUDUUDDUD, UDUDUDUUUDDD, UDUDUUDDUDUD, UDUDUUDUDDUD, UDUDUUDUUDDD, UDUDUUUDUDDD, UDUUDDUDUDUD, UDUUDUDDUDUD, UDUUDUDUDDUD, UDUUDUDUUDDD, UDUUDUUDUDDD, UDUUUDUDUDDD, UUDDUDUDUDUD, UUDUDDUDUDUD, UUDUDUDDUDUD, UUDUDUDUDDUD, UUDUDUDUUDDD, UUDUDUUDUDDD, UUDUUDUDUDDD, UUUDUDUDUDDD.
a(4) = 140: UDUDUDUDUUDDUUDD, UDUDUDUDUUUDDDUD, UDUDUDUDUUUDDUDD, ..., UUUDUDUUDUDUDDDD, UUUDUUDUDUDUDDDD, UUUUDUDUDUDUDDDD.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 1, (2*(n-1)*(2*n-1)^2*
          a(n-1)+12*(n-2)*(2*n-1)*(2*n-3)*a(n-2))/((n+1)*n*(n-1)))
        end:
    seq(a(n), n=0..21);

Formula

a(n) = A091869(2n,n).
a(n) mod 2 = 1 <=> n in { round(2^(2*k-3)) : k >= 0 } = { A081294 } U { 0 }.

A098747 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having exactly k UDU's at low level.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 8, 4, 1, 1, 24, 11, 5, 1, 1, 75, 35, 14, 6, 1, 1, 243, 113, 47, 17, 7, 1, 1, 808, 376, 156, 60, 20, 8, 1, 1, 2742, 1276, 532, 204, 74, 23, 9, 1, 1, 9458, 4402, 1840, 712, 257, 89, 26, 10, 1, 1, 33062, 15390, 6448, 2507, 917, 315, 105, 29, 11, 1, 1, 116868
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2004

Keywords

Comments

T(n,0) = A000958(n-1). - Emeric Deutsch, Dec 23 2006

Examples

			Triangle begins:
1
1 1
3 1 1
8 4 1 1
24 11 5 1 1
75 35 14 6 1 1
T(4,2)=1 because we have UDUDUUDD.
		

Crossrefs

Programs

  • Maple
    c:=(1-sqrt(1-4*z))/2/z: G:=z*c/(1-t*z+z-z*c): Gser:=simplify(series(G,z=0,15)): for n from 1 to 13 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 1 to 12 do seq(coeff(P[n],t,k),k=0..n-1) od; # yields sequence in triangular form - Emeric Deutsch, Dec 23 2006
  • Mathematica
    u[n_, k_, i_]:=(2i+1)/(n-k)Binomial[k+i, i]Binomial[2n-2k-2i-2, n-k-1] u[n_, k_]/;k<=n-1 := Sum[u[n, k, i], {i, 0, n-k-1}] Table[u[n, k], {n, 10}, {k, 0, n-1}] (* u[n, k, i] is the number of Dyck n-paths with k low UDUs and k+i+1 returns altogether. For example, with n=4, k=1 and i=1, u[n, k, i] counts UDUUDDUD, UUDDUDUD because each has size n=4, k=1 low UDUs and k+i+1=3 returns to ground level. *) (* David Callan, Nov 03 2005 *)

Formula

See Mathematica line.
G.f.=zC/(1+z-tz-zC), where C=(1-sqrt(1-4z))/(2z) is the Catalan function. - Emeric Deutsch, Dec 23 2006
With offset 0 (0<=k<=n), T(n,k)=A065600(n,k)+A065600(n+1,k)-A065600(n,k-1). - Philippe Deléham, Apr 01 2007

A132280 Triangle read by rows: T(n,k) is the number of paths in the first quadrant from (0,0) to (n,0), consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0), having k H steps (0<=k<=floor(n/2)).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 9, 6, 1, 21, 16, 3, 51, 45, 12, 1, 127, 126, 40, 4, 323, 357, 135, 20, 1, 835, 1016, 441, 80, 5, 2188, 2907, 1428, 315, 30, 1, 5798, 8350, 4572, 1176, 140, 6, 15511, 24068, 14535, 4284, 630, 42, 1, 41835, 69576, 45925, 15240, 2646, 224, 7
Offset: 0

Views

Author

Emeric Deutsch, Sep 03 2007

Keywords

Comments

Also, T(n,k) is the number of paths in the first quadrant from (0,0) to (n,0), consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0), having k peaks (i.e., UD's). Row n contains 1+floor(n/2) terms. T(n,0) = A001006(n) (the Motzkin numbers). Row sums yield A128720. Sum(k*T(n,k), k>=0) = A106053(n).
Shifting every column k of this triangle k steps upwards yields triangle A091869, but with another offset. - Werner Schulte, Feb 03 2017

Examples

			Triangle starts:
1;
1;
2,1;
4,2;
9,6,1;
21,16,3;
51,45,12,1;
T(5,2)=3 because we have hHH, HhH and HHh.
		

Crossrefs

Programs

  • Maple
    G:=((1-z-t*z^2-sqrt((1+z-t*z^2)*(1-3*z-t*z^2)))*1/2)/z^2: Gser:=simplify(series(G,z=0,17)): for n from 0 to 13 do P[n]:=sort(coeff(Gser,z,n),n=0..13) end do: for n from 0 to 13 do seq(coeff(P[n],t,j),j=0..floor((1/2)*n)) end do; # yields sequence in triangular form

Formula

G.f. = G = G(t,z) satisfies G = 1+zG+tz^2*G+z^2*G^2 (see explicit expression at the Maple program).

Extensions

Keyword tabf added by Michel Marcus, Apr 09 2013

A355201 Normalized Schur self-convolution expansion coefficients K_{n+1}^n / n giving the coefficients of the Laurent series (compositionally) inverse to f(z) = c_0 z + c_1 + c_2 / z + c_3 / z^2 + ... . Irregular triangle for partition polynomials, with row lengths A000041(n) - 1 except for the first two, which are both of length 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 3, 3, 1, 1, 6, 4, 2, 12, 6, 2, 4, 4, 1, 1, 10, 5, 10, 30, 10, 10, 10, 20, 10, 5, 5, 5, 1, 1, 15, 6, 30, 60, 15, 5, 60, 30, 60, 20, 15, 15, 30, 30, 15, 3, 6, 6, 6, 1, 1, 21, 7, 70, 105, 21, 35, 210, 70, 140, 35, 35, 105, 105, 105, 105, 35, 7, 42, 21, 21, 42, 42, 21, 7, 7, 7, 7, 1
Offset: 0

Views

Author

Tom Copeland, Jun 23 2022

Keywords

Comments

For the formal Laurent series f(z) = a_0 z + a_1 + a_2 / z + a_3 / z^2 + ..., the formal compositional inverse is g(z) = b_0 z + b_1 + b_2 / z + b_3 / z^2 + ..., whose coefficients are partition polynomials whose numerical factors are those of this irregular triangle T(n,k). For the Schur coefficients defined in the formula section, -b_n = K_{n}^{n-1} / (n-1) for n > 1.
Analytic proofs of the relationship between the partition polynomials of the compositional inverse pair of Laurent series and Schur's self-convolution expansion coefficients are given in Schur (beware of a sign error) and in Airault and Ren.
Explicit examples (with a_0=1) of K_{n}^{n-1} up through n=5 are in Airault and Bouali on p. 182.
Various formulas for the b_n in terms of the associahedra (A133437), noncrossing (A134264), reciprocal (A263633), and Faber partition (A263916) polynomials are given in Copeland as well as a derivation of the explicit multi-factorial expression in the formula section and a combinatorial model.

Examples

			Triangle begins:
1) 1
2) 1
3) 1
4) 1,  1
5) 1,  1,  2,  1
6) 1,  3,  3,  3,  3,  1
7) 1,  6,  4,  2, 12,  6,  2,  4,  4,  1
8) 1, 10,  5, 10, 30, 10, 10, 10, 20, 10,  5,  5,  5,  1
  ...
The first few partition polynomials, with the monomials in the order of the partitions on p. 831 of Abramowitz and Stegun, are
b0 =    1 / a0
b1 = - a1 / a0
b2 = - a2
b3 = -(a1 a2 + a0 a3)
b4 = -(a1^2 a2 + a0 a2^2 + 2 a0 a1 a3 + a0^2 a4)
b5 = -(a1^3 a2+ 3 a0 a1 a2^2 + 3 a0 a1^2 a_3 + 3 a0^2 a2 a3 + 3 a0^2 a1 a4
      + a0^3 a_5)
b6 = -(a1^4 a2 + 6 a0 a1^2 a2^2 + 4 a0 a1^3 a3 + 2 a0^2 a2^3 + 12 a0^2 a1 a2 a3
      + 6 a0^2 a1^2 a4  + 2 a0^3 a3^2 + 4a0^3 a2 a4 + 4 a0^3 a1 a5 + a0^4 a6)
b7 = -(a1^5 a2 + 10 a_0 a1^3 a2^2 + 5 a0 a1^4 a3 + 10 a0^2 a1 a2^3
      + 30 a0^2 a1^2 a2 a3 + 10 a0^2 a1^3 a4 + 10 a0^3 a2^2 a3 + 10 a0^3 a1 a3^2
      + 20 a0^3 a1 a2 a4 + 10 a0^3 a1^2 a5 + 5 a0^4 a3 a4 + 5 a0^4 a2 a5
      + 5 a0^4 a1 a6 + a0^5 a7)
_____________________
		

Crossrefs

Programs

  • Mathematica
    row[0] = row[1] = {1};
    row[n_] := With[{s = Expand[Coefficient[Sum[c[k] x^k, {k, 0, n}]^(n-1), x, n] / (n-1)]}, Table[Coefficient[s, Product[c[t], {t, p}]], {p, Reverse[Sort[Sort /@ IntegerPartitions[n, {n-1}, Range[0, n]]]]}]];
    Table[row[n], {n, 0, 8}] // Flatten (* Andrey Zabolotskiy, Feb 05 2023 *)

Formula

The index notations b(n), b_n, and bn are used interchangeably in this entry for indeterminates.
For n > 1, b_n(a_0,a_1,...,a_n) is a sum of monomials of the form a0^{e0} a1^{e1} a2^{e2} ... an^{en} with e1 * 1 + e2 * 2 + ... + en * n = n. When a_0 is not set to unity, e0 + e1 + ... + en = n - 1. (a1^n is not present.)
From a combinatorial argument in Copeland, the unsigned numerical coefficient of the monomial is given by (n-2)! / [(n - 1 - (e1 + e2 + ... + en))! e1! e2! ... en!].
The partition polynomials are generated by a subset of the Schur self-convolution expansion coefficients as -b_n = K_{n}^{n-1} / (n-1) =(D_{x=0}^n / n!) (a_0 + a_1 x + a_2 x^2 + ... + a_n x^n)^{n-1} / (n-1).
Row sums are the Catalan numbers A000108, ignoring the overall sign, for b_1 onwards.
Reduces to the Narayana triangle A001263 with a_0 = t and all the other indeterminates unity, ignoring the overall sign, for b_2 onwards.
Reduces to A091869 (reversed A091187) with a_1 = t and all the other indeterminates unity, ignoring the overall sign, for b_2 onwards.
b_n(c_1,...,c_n) = - Sum_{k=0}^{n-1} b_k(c_1,...,c_k) N_{n-k}(c_1,...,c_{n-k}) with c_0 = 1 and N_k(c_1,...,c_k) the noncrossing partition polynomials of A134264.
[b] = [R][N], representing the substitution of the noncrossing partition polynomials of A134264 for the indeterminates of the signed reciprocal polynomials of A263633 defined by R_n = 1 / (1 + c_1 x + c_2 x^2 + ...).
Conversely, [R][b] = [N] since the substitution transformation denoted by [R] is an involution, i.e., [R]^2 = [I], the identity substitution.
[b] = [R][A][R], a substitutional conjugation of the set of associahedra partition polynomials of A133147, or A111785, with re-indexing and (1') = 1, e.g., A_0 = 1, A_1 = -c_1, and A_2 = 2 c_1^2 - c_2.
Conversely, [A] = [R][b][R].

Extensions

Rows 8-9 added by Andrey Zabolotskiy, Feb 05 2023
Showing 1-10 of 10 results.